Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
447de34d
Commit
447de34d
authored
Sep 23, 2019
by
thomwolf
Browse files
tests for distilbert and roberta
parent
68a3e022
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
273 additions
and
31 deletions
+273
-31
pytorch_transformers/configuration_distilbert.py
pytorch_transformers/configuration_distilbert.py
+1
-1
pytorch_transformers/modeling_tf_distilbert.py
pytorch_transformers/modeling_tf_distilbert.py
+50
-30
pytorch_transformers/tests/modeling_tf_distilbert_test.py
pytorch_transformers/tests/modeling_tf_distilbert_test.py
+222
-0
No files found.
pytorch_transformers/configuration_distilbert.py
View file @
447de34d
...
...
@@ -37,7 +37,7 @@ class DistilBertConfig(PretrainedConfig):
def
__init__
(
self
,
vocab_size_or_config_json_file
=
30522
,
max_position_embeddings
=
512
,
sinusoidal_pos_embds
=
Tru
e
,
sinusoidal_pos_embds
=
Fals
e
,
n_layers
=
6
,
n_heads
=
12
,
dim
=
768
,
...
...
pytorch_transformers/modeling_tf_distilbert.py
View file @
447de34d
...
...
@@ -79,9 +79,9 @@ class TFEmbeddings(tf.keras.layers.Layer):
super
(
TFEmbeddings
,
self
).
__init__
(
**
kwargs
)
self
.
vocab_size
=
config
.
vocab_size
self
.
dim
=
config
.
dim
self
.
word_embeddings
=
TFSharedEmbeddings
(,
name
=
'word_embeddings'
)
# padding_idx=0)
self
.
word_embeddings
=
TFSharedEmbeddings
(
config
.
vocab_size
,
config
.
dim
,
name
=
'word_embeddings'
)
# padding_idx=0)
self
.
position_embeddings
=
tf
.
keras
.
layers
.
Embedding
(
config
.
max_position_embeddings
,
config
.
dim
,
name
=
'position_embeddings'
)
if
config
.
sinusoidal_
embedding
s
:
if
config
.
sinusoidal_
pos_embd
s
:
raise
NotImplementedError
self
.
LayerNorm
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
1e-12
,
name
=
"LayerNorm"
)
...
...
@@ -94,9 +94,9 @@ class TFEmbeddings(tf.keras.layers.Layer):
# arbitrarily, and works well.
self
.
word_embeddings
=
self
.
add_weight
(
"weight"
,
shape
=
[
self
.
vocab_size
,
self
.
hidden_size
],
shape
=
[
self
.
vocab_size
,
self
.
dim
],
initializer
=
tf
.
random_normal_initializer
(
mean
=
0.
,
stddev
=
self
.
hidden_size
**-
0.5
))
mean
=
0.
,
stddev
=
self
.
dim
**-
0.5
))
super
(
TFEmbeddings
,
self
).
build
(
input_shape
)
def
call
(
self
,
inputs
,
mode
=
"embedding"
,
training
=
False
):
...
...
@@ -133,13 +133,17 @@ class TFEmbeddings(tf.keras.layers.Layer):
embeddings: torch.tensor(bs, max_seq_length, dim)
The embedded tokens (plus position embeddings, no token_type embeddings)
"""
if
not
isinstance
(
inputs
,
(
tuple
,
list
)):
input_ids
=
inputs
position_ids
=
None
else
:
input_ids
,
position_ids
=
inputs
seq_length
=
tf
.
shape
(
input_ids
)[
1
]
if
position_ids
is
None
:
position_ids
=
tf
.
range
(
seq_length
,
dtype
=
tf
.
int32
)[
tf
.
newaxis
,
:]
word
s
_embeddings
=
tf
.
gather
(
self
.
word_embeddings
,
input_ids
)
word_embeddings
=
tf
.
gather
(
self
.
word_embeddings
,
input_ids
)
position_embeddings
=
self
.
position_embeddings
(
position_ids
)
# (bs, max_seq_length, dim)
embeddings
=
word_embeddings
+
position_embeddings
# (bs, max_seq_length, dim)
...
...
@@ -157,7 +161,7 @@ class TFEmbeddings(tf.keras.layers.Layer):
batch_size
=
tf
.
shape
(
inputs
)[
0
]
length
=
tf
.
shape
(
inputs
)[
1
]
x
=
tf
.
reshape
(
inputs
,
[
-
1
,
self
.
hidden_size
])
x
=
tf
.
reshape
(
inputs
,
[
-
1
,
self
.
dim
])
logits
=
tf
.
matmul
(
x
,
self
.
word_embeddings
,
transpose_b
=
True
)
return
tf
.
reshape
(
logits
,
[
batch_size
,
length
,
self
.
vocab_size
])
...
...
@@ -169,7 +173,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
self
.
n_heads
=
config
.
n_heads
self
.
dim
=
config
.
dim
self
.
dropout
=
nn
.
Dropout
(
p
=
config
.
attention_dropout
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
attention_dropout
)
self
.
output_attentions
=
config
.
output_attentions
assert
self
.
dim
%
self
.
n_heads
==
0
...
...
@@ -210,7 +214,7 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
assert
2
<=
len
(
tf
.
shape
(
mask
))
<=
3
causal
=
(
len
(
tf
.
shape
(
mask
))
==
3
)
mask_resh
p
=
[
bs
,
1
,
1
,
k_length
]
mask_resh
ape
=
[
bs
,
1
,
1
,
k_length
]
def
shape
(
x
):
""" separate heads """
...
...
@@ -327,7 +331,7 @@ class TFTransformer(tf.keras.layers.Layer):
self
.
layer
=
[
TFTransformerBlock
(
config
,
name
=
'layer_._{}'
.
format
(
i
))
for
i
in
range
(
config
.
n_layers
)]
def
forward
(
self
,
inputs
,
training
=
False
):
def
call
(
self
,
inputs
,
training
=
False
):
"""
Parameters
----------
...
...
@@ -403,6 +407,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
"""
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFDistilBertMainLayer
,
self
).
__init__
(
**
kwargs
)
self
.
num_hidden_layers
=
config
.
num_hidden_layers
self
.
embeddings
=
TFEmbeddings
(
config
,
name
=
"embeddings"
)
# Embeddings
self
.
transformer
=
TFTransformer
(
config
,
name
=
"transformer"
)
# Encoder
...
...
@@ -430,6 +435,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
if
attention_mask
is
None
:
attention_mask
=
tf
.
ones
(
shape_list
(
input_ids
))
# (bs, seq_length)
attention_mask
=
tf
.
cast
(
attention_mask
,
dtype
=
tf
.
float32
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
...
...
@@ -439,15 +445,12 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
if
head_mask
is
not
None
:
raise
NotImplementedError
else
:
head_mask
=
[
None
]
*
self
.
config
.
num_hidden_layers
head_mask
=
[
None
]
*
self
.
num_hidden_layers
embedding_output
=
self
.
embeddings
(
input_ids
)
# (bs, seq_length, dim)
tfmr_output
=
self
.
transformer
([
embedding_output
,
attention_mask
,
head_mask
],
training
=
training
)
hidden_state
=
tfmr_output
[
0
]
output
=
(
hidden_state
,
)
+
tfmr_output
[
1
:]
return
output
# last-layer hidden-state, (all hidden_states), (all attentions)
return
tfmr_output
# last-layer hidden-state, (all hidden_states), (all attentions)
### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
...
...
@@ -503,7 +506,7 @@ DISTILBERT_INPUTS_DOCSTRING = r"""
@
add_start_docstrings
(
"The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top."
,
DISTILBERT_START_DOCSTRING
,
DISTILBERT_INPUTS_DOCSTRING
)
class
DistilBertModel
(
DistilBertPreTrainedModel
):
class
TF
DistilBertModel
(
TF
DistilBertPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
...
...
@@ -526,7 +529,7 @@ class DistilBertModel(DistilBertPreTrainedModel):
"""
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
DistilBertModel
,
self
).
__init__
(
config
,
*
inputs
,
**
kwargs
)
super
(
TF
DistilBertModel
,
self
).
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
distilbert
=
TFDistilBertMainLayer
(
config
,
name
=
"distilbert"
)
# Embeddings
def
call
(
self
,
inputs
,
training
=
False
):
...
...
@@ -534,6 +537,28 @@ class DistilBertModel(DistilBertPreTrainedModel):
return
outputs
class
TFDistilBertLMHead
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
config
,
input_embeddings
,
**
kwargs
):
super
(
TFDistilBertLMHead
,
self
).
__init__
(
**
kwargs
)
self
.
vocab_size
=
config
.
vocab_size
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self
.
input_embeddings
=
input_embeddings
def
build
(
self
,
input_shape
):
self
.
bias
=
self
.
add_weight
(
shape
=
(
self
.
vocab_size
,),
initializer
=
'zeros'
,
trainable
=
True
,
name
=
'bias'
)
super
(
TFDistilBertLMHead
,
self
).
build
(
input_shape
)
def
call
(
self
,
hidden_states
):
hidden_states
=
self
.
input_embeddings
(
hidden_states
,
mode
=
"linear"
)
hidden_states
=
hidden_states
+
self
.
bias
return
hidden_states
@
add_start_docstrings
(
"""DistilBert Model with a `masked language modeling` head on top. """
,
DISTILBERT_START_DOCSTRING
,
DISTILBERT_INPUTS_DOCSTRING
)
class
TFDistilBertForMaskedLM
(
TFDistilBertPreTrainedModel
):
...
...
@@ -570,27 +595,22 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
super
(
TFDistilBertForMaskedLM
,
self
).
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
output_attentions
=
config
.
output_attentions
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
vocab_size
=
config
.
vocab_size
self
.
distilbert
=
TFDistilBertMainLayer
(
config
,
name
=
"distilbert"
)
self
.
vocab_transform
=
tf
.
keras
.
layers
.
Dense
(
config
.
dim
,
name
=
"vocab_transform"
)
self
.
act
=
tf
.
keras
.
layers
.
Activation
(
gelu
)
self
.
vocab_layer_norm
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
1e-12
,
name
=
"vocab_layer_norm"
)
self
.
vocab_projector_weight
=
self
.
distilbert
.
embeddings
def
build
(
self
,
input_shape
):
self
.
vocab_projector_bias
=
self
.
add_weight
(
shape
=
(
self
.
vocab_size
,),
initializer
=
'zeros'
,
trainable
=
True
,
name
=
'vocab_projector_._bias'
)
super
(
TFDistilBertForMaskedLM
,
self
).
build
(
input_shape
)
self
.
vocab_projector
=
TFDistilBertLMHead
(
config
,
self
.
distilbert
.
embeddings
,
name
=
"vocab_projector"
)
def
call
(
self
,
inputs
,
training
=
False
):
dlbrt_output
=
self
.
distilbert
(
inputs
,
training
=
training
)
hidden_states
=
dlbrt_output
[
0
]
# (bs, seq_length, dim)
prediction_logits
=
self
.
vocab_transform
(
hidden_states
)
# (bs, seq_length, dim)
prediction_logits
=
self
.
act
(
prediction_logits
)
# (bs, seq_length, dim)
prediction_logits
=
self
.
vocab_layer_norm
(
prediction_logits
)
# (bs, seq_length, dim)
prediction_logits
=
self
.
vocab_projector
_weight
(
prediction_logits
,
mode
=
'linear'
)
+
self
.
vocab_projector_bias
prediction_logits
=
self
.
vocab_projector
(
prediction_logits
)
outputs
=
(
prediction_logits
,
)
+
dlbrt_output
[
1
:]
...
...
pytorch_transformers/tests/modeling_tf_distilbert_test.py
0 → 100644
View file @
447de34d
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
pytorch_transformers
import
DistilBertConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
pytorch_transformers.modeling_tf_distilbert
import
(
TFDistilBertModel
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForSequenceClassification
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFDistilBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFDistilBertModel
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForSequenceClassification
)
if
is_tf_available
()
else
None
test_pruning
=
True
test_torchscript
=
True
test_resize_embeddings
=
True
test_head_masking
=
True
class
TFDistilBertModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
False
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
DistilBertConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
hidden_dim
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
dropout
=
self
.
hidden_dropout_prob
,
attention_dropout
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
initializer_range
=
self
.
initializer_range
)
return
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_distilbert_model
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFDistilBertModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
outputs
=
model
(
inputs
)
sequence_output
=
outputs
[
0
]
inputs
=
[
input_ids
,
input_mask
]
(
sequence_output
,)
=
model
(
inputs
)
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_distilbert_for_masked_lm
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFDistilBertForMaskedLM
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
(
prediction_scores
,)
=
model
(
inputs
)
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_distilbert_for_question_answering
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFDistilBertForQuestionAnswering
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
start_logits
,
end_logits
=
model
(
inputs
)
result
=
{
"start_logits"
:
start_logits
.
numpy
(),
"end_logits"
:
end_logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
def
create_and_check_distilbert_for_sequence_classification
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
TFDistilBertForSequenceClassification
(
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
(
logits
,)
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_labels
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFDistilBertModelTest
.
TFDistilBertModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
DistilBertConfig
,
dim
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_distilbert_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_model
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_masked_lm
(
*
config_and_inputs
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_question_answering
(
*
config_and_inputs
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_sequence_classification
(
*
config_and_inputs
)
# @pytest.mark.slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/pytorch_transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# shutil.rmtree(cache_dir)
# self.assertIsNotNone(model)
if
__name__
==
"__main__"
:
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment