PyTorch-Transformers is a library of state-of-the-art pre-trained models for Natural Language Processing (NLP).
The library currently contains PyTorch implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
-**[Google's BERT model](https://github.com/google-research/bert)** released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
-**[OpenAI's GPT model](https://github.com/openai/finetune-transformer-lm)** released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
-**[OpenAI's GPT-2 model](https://blog.openai.com/better-language-models/)** released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
-**[Google/CMU's Transformer-XL model](https://github.com/kimiyoung/transformer-xl)** released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
-**[Google/CMU's XLNet model](https://github.com/zihangdai/xlnet/)** released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
-**[Facebook's XLM model](https://github.com/facebookresearch/XLM/)** released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1.**[BERT](https://github.com/google-research/bert)**(from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2.**[GPT](https://github.com/openai/finetune-transformer-lm)**(from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
3.**[GPT-2](https://blog.openai.com/better-language-models/)**(from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
4.**[Transformer-XL](https://github.com/kimiyoung/transformer-xl)**(from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5.**[XLNet](https://github.com/zihangdai/xlnet/)**(from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6.**[XLM](https://github.com/facebookresearch/XLM/)**(from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](#documentation).
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/pytorch-transformers/examples.html).
| Section | Description |
|-|-|
...
...
@@ -21,7 +21,7 @@ These implementations have been tested on several datasets (see the example scri
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-pytorch-transformers) | Migrating your code from pytorch-pretrained-bert to pytorch-transformers |
| [Documentation](#documentation) | Full API documentation and more |
| [Documentation](https://huggingface.co/pytorch-transformers/) | Full API documentation and more |
## Installation
...
...
@@ -202,13 +202,14 @@ Examples for each model class of each model architecture (Bert, GPT, GPT-2, Tran
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
- fine-tuning Bert/XLNet/XLM with a *sequence-level classifier* on nine different GLUE tasks,
- fine-tuning Bert/XLNet/XLM with a *token-level classifier* on the question answering dataset SQuAD 2.0, and
- using GPT/GPT-2/Transformer-XL and XLNet for conditional language generation.
-`run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
-`run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
-`run_generation.py`: an example using GPT, GPT-2, Transformer-XL and XLNet for conditional language generation
- other model-specific examples (see the documentation).
Here are three quick usage examples for these scripts:
### Fine-tuning for sequence classification: GLUE tasks examples
### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
...
...
@@ -302,7 +303,7 @@ Training with these hyper-parameters gave us the following results:
loss = 0.07231863956341798
```
### Fine-tuning for question-answering: SQuAD example
### `run_squad.py`: Fine-tuning on SQuAD for question-answering
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
### Conditional generation: Text generation with GPT, GPT-2, Transformer-XL and XLNet
### `run_generation.py`: Text generation with GPT, GPT-2, Transformer-XL and XLNet
A conditional generation script is also included to generate text from a prompt.
The generation script include the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
A command-line interface is provided to convert a TensorFlow checkpoint in a PyTorch dump of the ``BertForPreTraining`` class (for BERT) or NumPy checkpoint in a PyTorch dump of the ``OpenAIGPTModel`` class (for OpenAI GPT).
@@ -6,43 +6,47 @@ This repo was tested on Python 2.7 and 3.5+ (examples are tested only on python
With pip
^^^^^^^^
PyTorch pretrained bert can be installed by pip as follows:
PyTorch pretrained bert can be installed with pip as follows:
.. code-block:: bash
pip install pytorch-pretrained-bert
If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (limit to version 4.4.3 if you are using Python 2) and ``SpaCy`` :
.. code-block:: bash
pip install spacy ftfy==4.4.3
python -m spacy download en
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
Here also, if you want to reproduce the original tokenization process of the ``OpenAI GPT`` model, you will need to install ``ftfy`` (limit to version 4.4.3 if you are using Python 2) and ``SpaCy`` :
Tests
^^^^^
An extensive test suite is included for the library and the example scripts. Library tests can be found in the `tests folder <https://github.com/huggingface/pytorch-transformers/tree/master/pytorch_transformers/tests>`_ and examples tests in the `examples folder <https://github.com/huggingface/pytorch-transformers/tree/master/examples>`_.
These tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
You can run the tests from the root of the cloned repository with the commands:
Again, if you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage).
A series of tests is included in the `tests folder <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/tests>`_ and can be run using ``pytest`` (install pytest if needed: ``pip install pytest``\ ).
OpenAI GPT original tokenization workflow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can run the tests with the command:
If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (limit to version 4.4.3 if you are using Python 2) and ``SpaCy`` :
.. code-block:: bash
python -m pytest -sv tests/
pip install spacy ftfy==4.4.3
python -m spacy download en
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `pytorch-transformers`
### Models always output `tuples`
The main breaking change when migrating from `pytorch-pretrained-bert` to `pytorch-transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/pytorch-transformers/).
In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.
Here is a `pytorch-pretrained-bert` to `pytorch-transformers` conversion example for a `BertForSequenceClassification` classification model:
While not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other seralization method before.
### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules
The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer.
The new optimizer `AdamW` matches PyTorch `Adam` optimizer API.
The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.
Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:
Here is a quick-start example using `GPT2Tokenizer` and `GPT2LMHeadModel` class with OpenAI's pre-trained model to predict the next token from a text prompt.
First let's prepare a tokenized input from our text string using `GPT2Tokenizer`
assertpredicted_text=='Who was Jim Henson? Jim Henson was a man'
```
Examples for each model class of each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [documentation](#documentation).
Hereisaquick-startexampleusing``BertTokenizer``\,``BertModel``and``BertForMaskedLM``classwithGoogleAI's pre-trained ``Bert base uncased`` model. See the `doc section <./model_doc/overview.html>`_ below for all the details on these classes.
First let'sprepareatokenizedinputwith``BertTokenizer``
Hereisaquick-startexampleusing``OpenAIGPTTokenizer``\,``OpenAIGPTModel``and``OpenAIGPTLMHeadModel``classwithOpenAI's pre-trained model. See the `doc section <./model_doc/overview.html>`_ for all the details on these classes.
First let'sprepareatokenizedinputwith``OpenAIGPTTokenizer``
Here is a quick-start example using ``GPT2Tokenizer``\ , ``GPT2Model`` and ``GPT2LMHeadModel`` class with OpenAI'spre-trainedmodel.Seethe`docsection<./model_doc/overview.html>`_forallthedetailsontheseclasses.
Firstlet's prepare a tokenized input with ``GPT2Tokenizer``
.. code-block:: python
import torch
from pytorch_transformers import GPT2Tokenizer, GPT2Model, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what'shappening,activatetheloggerasfollows
importlogging
logging.basicConfig(level=logging.INFO)
#Loadpre-trainedmodeltokenizer(vocabulary)
tokenizer=GPT2Tokenizer.from_pretrained('gpt2')
#Encodesomeinputs
text_1="Who was Jim Henson ?"
text_2="Jim Henson was a puppeteer"
indexed_tokens_1=tokenizer.encode(text_1)
indexed_tokens_2=tokenizer.encode(text_2)
#ConvertinputstoPyTorchtensors
tokens_tensor_1=torch.tensor([indexed_tokens_1])
tokens_tensor_2=torch.tensor([indexed_tokens_2])
Let's see how to use ``GPT2Model`` to get hidden states
.. code-block:: python
# Load pre-trained model (weights)
model = GPT2Model.from_pretrained('gpt2')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
hidden_states_1, past = model(tokens_tensor_1)
# past can be used to reuse precomputed hidden state in a subsequent predictions
# (see beam-search examples in the run_gpt2.py example).
hidden_states_2, past = model(tokens_tensor_2, past=past)
And how to use ``GPT2LMHeadModel``
.. code-block:: python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor_1 = tokens_tensor_1.to('cuda')
tokens_tensor_2 = tokens_tensor_2.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
predictions_1, past = model(tokens_tensor_1)
# past can be used to reuse precomputed hidden state in a subsequent predictions
# (see beam-search examples in the run_gpt2.py example).
predictions_2, past = model(tokens_tensor_2, past=past)