Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
426b9623
"git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "98d0d593bb180050df78dffa744fdcf38a7438e1"
Unverified
Commit
426b9623
authored
Feb 17, 2022
by
Gunjan Chhablani
Committed by
GitHub
Feb 17, 2022
Browse files
Fix shapes in model docstrings (#15696)
parent
92a537d9
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
27 additions
and
27 deletions
+27
-27
src/transformers/models/bart/modeling_bart.py
src/transformers/models/bart/modeling_bart.py
+9
-9
src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
...mers/models/blenderbot_small/modeling_blenderbot_small.py
+9
-9
src/transformers/models/marian/modeling_marian.py
src/transformers/models/marian/modeling_marian.py
+9
-9
No files found.
src/transformers/models/bart/modeling_bart.py
View file @
426b9623
...
@@ -294,11 +294,11 @@ class BartEncoderLayer(nn.Module):
...
@@ -294,11 +294,11 @@ class BartEncoderLayer(nn.Module):
):
):
"""
"""
Args:
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape
*
(seq_len, batch, embed_dim)
*
hidden_states (`torch.FloatTensor`): input to the layer of shape
`
(seq_len, batch, embed_dim)
`
attention_mask (`torch.FloatTensor`): attention mask of size
attention_mask (`torch.FloatTensor`): attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*
(encoder_attention_heads,)
*
.
`
(encoder_attention_heads,)
`
.
output_attentions (`bool`, *optional*):
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
returned tensors for more detail.
...
@@ -377,17 +377,17 @@ class BartDecoderLayer(nn.Module):
...
@@ -377,17 +377,17 @@ class BartDecoderLayer(nn.Module):
):
):
"""
"""
Args:
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape
*
(batch, seq_len, embed_dim)
*
hidden_states (`torch.FloatTensor`): input to the layer of shape
`
(batch, seq_len, embed_dim)
`
attention_mask (`torch.FloatTensor`): attention mask of size
attention_mask (`torch.FloatTensor`): attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape
*
(batch, seq_len, embed_dim)
*
cross attention input to the layer of shape
`
(batch, seq_len, embed_dim)
`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*
(encoder_attention_heads,)
*
.
`
(encoder_attention_heads,)
`
.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size
*
(decoder_attention_heads,)
*
.
size
`
(decoder_attention_heads,)
`
.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
...
...
src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
View file @
426b9623
...
@@ -295,11 +295,11 @@ class BlenderbotSmallEncoderLayer(nn.Module):
...
@@ -295,11 +295,11 @@ class BlenderbotSmallEncoderLayer(nn.Module):
):
):
"""
"""
Args:
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape
*
(seq_len, batch, embed_dim)
*
hidden_states (`torch.FloatTensor`): input to the layer of shape
`
(seq_len, batch, embed_dim)
`
attention_mask (`torch.FloatTensor`): attention mask of size
attention_mask (`torch.FloatTensor`): attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*
(encoder_attention_heads,)
*
.
`
(encoder_attention_heads,)
`
.
output_attentions (`bool`, *optional*):
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
returned tensors for more detail.
...
@@ -379,17 +379,17 @@ class BlenderbotSmallDecoderLayer(nn.Module):
...
@@ -379,17 +379,17 @@ class BlenderbotSmallDecoderLayer(nn.Module):
):
):
"""
"""
Args:
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape
*
(batch, seq_len, embed_dim)
*
hidden_states (`torch.FloatTensor`): input to the layer of shape
`
(batch, seq_len, embed_dim)
`
attention_mask (`torch.FloatTensor`): attention mask of size
attention_mask (`torch.FloatTensor`): attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape
*
(batch, seq_len, embed_dim)
*
cross attention input to the layer of shape
`
(batch, seq_len, embed_dim)
`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*
(encoder_attention_heads,)
*
.
`
(encoder_attention_heads,)
`
.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size
*
(decoder_attention_heads,)
*
.
size
`
(decoder_attention_heads,)
`
.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
...
...
src/transformers/models/marian/modeling_marian.py
View file @
426b9623
...
@@ -312,11 +312,11 @@ class MarianEncoderLayer(nn.Module):
...
@@ -312,11 +312,11 @@ class MarianEncoderLayer(nn.Module):
):
):
"""
"""
Args:
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape
*
(seq_len, batch, embed_dim)
*
hidden_states (`torch.FloatTensor`): input to the layer of shape
`
(seq_len, batch, embed_dim)
`
attention_mask (`torch.FloatTensor`): attention mask of size
attention_mask (`torch.FloatTensor`): attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*
(encoder_attention_heads,)
*
.
`
(encoder_attention_heads,)
`
.
output_attentions (`bool`, *optional*):
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
returned tensors for more detail.
...
@@ -396,17 +396,17 @@ class MarianDecoderLayer(nn.Module):
...
@@ -396,17 +396,17 @@ class MarianDecoderLayer(nn.Module):
):
):
"""
"""
Args:
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape
*
(batch, seq_len, embed_dim)
*
hidden_states (`torch.FloatTensor`): input to the layer of shape
`
(batch, seq_len, embed_dim)
`
attention_mask (`torch.FloatTensor`): attention mask of size
attention_mask (`torch.FloatTensor`): attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape
*
(batch, seq_len, embed_dim)
*
cross attention input to the layer of shape
`
(batch, seq_len, embed_dim)
`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*
(batch, 1, tgt_len, src_len)
*
where padding elements are indicated by very large negative values.
`
(batch, 1, tgt_len, src_len)
`
where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*
(encoder_attention_heads,)
*
.
`
(encoder_attention_heads,)
`
.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size
*
(decoder_attention_heads,)
*
.
size
`
(decoder_attention_heads,)
`
.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment