Unverified Commit 425ff71c authored by Jitesh Jain's avatar Jitesh Jain Committed by GitHub
Browse files

Fix OneFormer Docstrings (#21215)

* Fix processor

* Fix shape in docstring
parent b0969caf
...@@ -2917,7 +2917,7 @@ class OneFormerModel(OneFormerPreTrainedModel): ...@@ -2917,7 +2917,7 @@ class OneFormerModel(OneFormerPreTrainedModel):
>>> class_predictions = outputs.transformer_decoder_class_predictions >>> class_predictions = outputs.transformer_decoder_class_predictions
>>> f"👉 Mask Predictions Shape: {list(mask_predictions.shape)}, Class Predictions Shape: {list(class_predictions.shape)}" >>> f"👉 Mask Predictions Shape: {list(mask_predictions.shape)}, Class Predictions Shape: {list(class_predictions.shape)}"
'👉 Mask Predictions Shape: [1, 150, 128, 176], Class Predictions Shape: [1, 150, 151]' '👉 Mask Predictions Shape: [1, 150, 128, 171], Class Predictions Shape: [1, 150, 151]'
```""" ```"""
if pixel_values is None: if pixel_values is None:
...@@ -3112,8 +3112,8 @@ class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel): ...@@ -3112,8 +3112,8 @@ class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel):
>>> class_queries_logits = outputs.class_queries_logits >>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to feature_extractor for semantic postprocessing >>> # you can pass them to processor for semantic postprocessing
>>> predicted_semantic_map = feature_extractor.post_process_semantic_segmentation( >>> predicted_semantic_map = processor.post_process_semantic_segmentation(
... outputs, target_sizes=[image.size[::-1]] ... outputs, target_sizes=[image.size[::-1]]
... )[0] ... )[0]
>>> f"👉 Semantic Predictions Shape: {list(predicted_semantic_map.shape)}" >>> f"👉 Semantic Predictions Shape: {list(predicted_semantic_map.shape)}"
...@@ -3129,8 +3129,8 @@ class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel): ...@@ -3129,8 +3129,8 @@ class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel):
>>> class_queries_logits = outputs.class_queries_logits >>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to feature_extractor for instance postprocessing >>> # you can pass them to processor for instance postprocessing
>>> predicted_instance_map = feature_extractor.post_process_instance_segmentation( >>> predicted_instance_map = processor.post_process_instance_segmentation(
... outputs, target_sizes=[image.size[::-1]] ... outputs, target_sizes=[image.size[::-1]]
... )[0]["segmentation"] ... )[0]["segmentation"]
>>> f"👉 Instance Predictions Shape: {list(predicted_instance_map.shape)}" >>> f"👉 Instance Predictions Shape: {list(predicted_instance_map.shape)}"
...@@ -3146,8 +3146,8 @@ class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel): ...@@ -3146,8 +3146,8 @@ class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel):
>>> class_queries_logits = outputs.class_queries_logits >>> class_queries_logits = outputs.class_queries_logits
>>> masks_queries_logits = outputs.masks_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits
>>> # you can pass them to feature_extractor for panoptic postprocessing >>> # you can pass them to processor for panoptic postprocessing
>>> predicted_panoptic_map = feature_extractor.post_process_panoptic_segmentation( >>> predicted_panoptic_map = processor.post_process_panoptic_segmentation(
... outputs, target_sizes=[image.size[::-1]] ... outputs, target_sizes=[image.size[::-1]]
... )[0]["segmentation"] ... )[0]["segmentation"]
>>> f"👉 Panoptic Predictions Shape: {list(predicted_panoptic_map.shape)}" >>> f"👉 Panoptic Predictions Shape: {list(predicted_panoptic_map.shape)}"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment