| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-pytorch-transformers) | Migrating your code from pytorch-pretrained-bert to pytorch-transformers |
...
...
@@ -68,6 +69,14 @@ It contains an example of a conversion script from a Pytorch trained Transformer
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML,
or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!
## Online demo
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team at transformer.huggingface.co, is the official demo of this repo’s text generation capabilities.
You can use it to experiment with completions generated by `GPT2Model`, `TransfoXLModel`, and `XLNetModel`.
> “🦄 Write with transformer is to writing what calculators are to calculus.”
Touse16-bitstraininganddistributedtraining,youneedtoinstallNVIDIA's apex extension `as detailed here <https://github.com/nvidia/apex>`__. You will find more information regarding the internals of ``apex`` and how to use ``apex`` in `the doc and the associated repository <https://github.com/nvidia/apex>`_. The results of the tests performed on pytorch-BERT by the NVIDIA team (and my trials at reproducing them) can be consulted in `the relevant PR of the present repository <https://github.com/huggingface/pytorch-pretrained-BERT/pull/116>`_.
Note: To use *Distributed Training*\ , you will need to run one training script on each of your machines. This can be done for example by running the following command on each server (see `the above mentioned blog post <https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255>`_\ ) for more details):
.. code-block:: bash
python -m torch.distributed.launch \
--nproc_per_node=4 \
--nnodes=2 \
--node_rank=$THIS_MACHINE_INDEX \
--master_addr="192.168.1.1" \
--master_port=1234 run_bert_classifier.py \
(--arg1 --arg2 --arg3 and all other arguments of the run_classifier script)
Where ``$THIS_MACHINE_INDEX`` is an sequential index assigned to each of your machine (0, 1, 2...) and the machine with rank 0 has an IP address ``192.168.1.1`` and an open port ``1234``.
.. _fine-tuning-bert-examples:
Fine-tuning with BERT: running the examples
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We showcase several fine-tuning examples based on (and extended from) `the original implementation <https://github.com/google-research/bert/>`_\ :
* a *sequence-level classifier* on nine different GLUE tasks,
* a *token-level classifier* on the question answering dataset SQuAD, and
* a *sequence-level multiple-choice classifier* on the SWAG classification corpus.
* a *BERT language model* on another target corpus
GLUE results on dev set
~~~~~~~~~~~~~~~~~~~~~~~
We get the following results on the dev set of GLUE benchmark with an uncased BERT base
model (`bert-base-uncased`). All experiments ran on 8 V100 GPUs with a total train batch size of 24. Some of
these tasks have a small dataset and training can lead to high variance in the results between different runs.
We report the median on 5 runs (with different seeds) for each of the metrics.
Thecodehasnotbeentestedwithhalf-precisiontrainingwithapexonanyGLUEtaskapartfromMRPC,MNLI,CoLA,SST-2.Thefollowingsectionprovidesdetailsonhowtorunhalf-precisiontrainingwithMRPC.Withthatbeingsaid,thereshouldn't be any issues in running half-precision training with the remaining GLUE tasks as well, since the data processor for each task inherits from the base class DataProcessor.
MRPC
~~~~
This example code fine-tunes BERT on the Microsoft Research Paraphrase
Corpus (MRPC) corpus and runs in less than 10 minutes on a single K-80 and in 27 seconds (!) on single tesla V100 16GB with apex installed.
Before running this example you should download the
`GLUE data <https://gluebenchmark.com/tasks>`_ by running
Our test ran on a few seeds with `the original implementation hyper-parameters <https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks>`__ gave evaluation results between 84% and 88%.
**Fast run with apex and 16 bit precision: fine-tuning on MRPC in 27 seconds!**
First install apex as indicated `here <https://github.com/NVIDIA/apex>`__.
Then run
.. code-block:: shell
export GLUE_DIR=/path/to/glue
python run_bert_classifier.py \
--task_name MRPC \
--do_train \
--do_eval \
--do_lower_case \
--data_dir $GLUE_DIR/MRPC/ \
--bert_model bert-base-uncased \
--max_seq_length 128 \
--train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/mrpc_output/ \
--fp16
**Distributed training**
Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking model to reach a F1 > 92 on MRPC:
The data for SWAG can be downloaded by cloning the following `repository <https://github.com/rowanz/swagaf>`_
.. code-block:: shell
export SWAG_DIR=/path/to/SWAG
python run_bert_swag.py \
--bert_model bert-base-uncased \
--do_train \
--do_lower_case \
--do_eval \
--data_dir $SWAG_DIR/data \
--train_batch_size 16 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--max_seq_length 80 \
--output_dir /tmp/swag_output/ \
--gradient_accumulation_steps 4
Training with the previous hyper-parameters on a single GPU gave us the following results:
.. code-block::
eval_accuracy = 0.8062081375587323
eval_loss = 0.5966546792367169
global_step = 13788
loss = 0.06423990014260186
LM Fine-tuning
~~~~~~~~~~~~~~
The data should be a text file in the same format as `sample_text.txt <./pytorch_transformers/tests/fixtures/sample_text.txt/sample_text.txt>`_ (one sentence per line, docs separated by empty line).
You can download an `exemplary training corpus <https://ext-bert-sample.obs.eu-de.otc.t-systems.com/small_wiki_sentence_corpus.txt>`_ generated from wikipedia articles and split into ~500k sentences with spaCy.
Training one epoch on this corpus takes about 1:20h on 4 x NVIDIA Tesla P100 with ``train_batch_size=200`` and ``max_seq_length=128``\ :
Thank to the work of @Rocketknight1 and @tholor there are now **several scripts** that can be used to fine-tune BERT using the pretraining objective (combination of masked-language modeling and next sentence prediction loss). These scripts are detailed in the `README <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/lm_finetuning/README.md>`_ of the `examples/lm_finetuning/ <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/lm_finetuning/>`_ folder.
.. _fine-tuning:
OpenAI GPT, Transformer-XL and GPT-2: running the examples
We provide three examples of scripts for OpenAI GPT, Transformer-XL, OpenAI GPT-2, BERT and RoBERTa based on (and extended from) the respective original implementations:
* fine-tuning OpenAI GPT on the ROCStories dataset
* evaluating Transformer-XL on Wikitext 103
* unconditional and conditional generation from a pre-trained OpenAI GPT-2 model
* fine-tuning GPT/GPT-2 on a causal language modeling task and BERT/RoBERTa on a masked language modeling task
Fine-tuning OpenAI GPT on the RocStories dataset
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This example code fine-tunes OpenAI GPT on the RocStories dataset.
Before running this example you should download the
`RocStories dataset <https://github.com/snigdhac/StoryComprehension_EMNLP/tree/master/Dataset/RoCStories>`_ and unpack it to some directory ``$ROC_STORIES_DIR``.
This command runs in about 10 min on a single K-80 an gives an evaluation accuracy of about 87.7% (the authors report a median accuracy with the TensorFlow code of 85.8% and the OpenAI GPT paper reports a best single run accuracy of 86.5%).
Evaluating the pre-trained Transformer-XL on the WikiText 103 dataset
This example code evaluate the pre-trained Transformer-XL on the WikiText 103 dataset.
This command will download a pre-processed version of the WikiText 103 dataset in which the vocabulary has been computed.
.. code-block:: shell
python run_transfo_xl.py --work_dir ../log
This command runs in about 1 min on a V100 and gives an evaluation perplexity of 18.22 on WikiText-103 (the authors report a perplexity of about 18.3 on this dataset with the TensorFlow code).
Unconditional and conditional generation from OpenAI'sGPT-2model
Our test ran on a few seeds with `the original implementation hyper-parameters <https://github.com/zihangdai/xlnet#1-sts-b-sentence-pair-relevance-regression-with-gpus>`__ gave evaluation results between 84% and 88%.
**Distributed training**
Here is an example using distributed training on 8 V100 GPUs to reach XXXX:
| [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
| [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
| [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
| [SQuAD](#squad) | Using BERT for question answering, examples with distributed training. |
## Language model fine-tuning
Based on the script [`run_lm_finetuning.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_lm_finetuning.py).
Fine-tuning the library models for language modeling on a text dataset for GPT, GPT-2, BERT and RoBERTa (DistilBERT
to be added soon). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa
are fine-tuned using a masked language modeling (MLM) loss.
Before running the following example, you should get a file that contains text on which the language model will be
fine-tuned. A good example of such text is the [WikiText-2 dataset](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/).
We will refer to two different files: `$TRAIN_FILE`, which contains text for training, and `$TEST_FILE`, which contains
text that will be used for evaluation.
### GPT-2/GPT and causal language modeling
The following example fine-tunes GPT-2 on WikiText-2. We're using the raw WikiText-2 (no tokens were replaced before
the tokenization). The loss here is that of causal language modeling.
```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
python run_lm_finetuning.py \
--output_dir=output \
--model_type=gpt2 \
--model_name_or_path=gpt2 \
--do_train\
--train_data_file=$TRAIN_FILE\
--do_eval\
--eval_data_file=$TEST_FILE
```
This takes about half an hour to train on a single K80 GPU and about one minute for the evaluation to run. It reaches
a score of ~20 perplexity once fine-tuned on the dataset.
### RoBERTa/BERT and masked language modeling
The following example fine-tunes RoBERTa on WikiText-2. Here too, we're using the raw WikiText-2. The loss is different
as BERT/RoBERTa have a bidirectional mechanism; we're therefore using the same loss that was used during their
pre-training: masked language modeling.
In accordance to the RoBERTa paper, we use dynamic masking rather than static masking. The model may, therefore, converge
slightly slower (over-fitting takes more epochs).
We use the `--mlm` flag so that the script may change its loss function.
```bash
export TRAIN_FILE=/path/to/dataset/wiki.train.raw
export TEST_FILE=/path/to/dataset/wiki.test.raw
python run_lm_finetuning.py \
--output_dir=output \
--model_type=roberta \
--model_name_or_path=roberta-base \
--do_train\
--train_data_file=$TRAIN_FILE\
--do_eval\
--eval_data_file=$TEST_FILE\
--mlm
```
## Language generation
Based on the script [`run_generation.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_generation.py).
Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet.
A similar script is used for our official demo [Write With Transfomer](https://transformer.huggingface.co), where you
can try out the different models available in the library.
Example usage:
```bash
python run_generation.py \
--model_type=gpt2 \
--model_name_or_path=gpt2
```
## GLUE
Based on the script [`run_glue.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py).
Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding
Evaluation](https://gluebenchmark.com/). This script can fine-tune the following models: BERT, XLM, XLNet and RoBERTa.
GLUE is made up of a total of 9 different tasks. We get the following results on the dev set of the benchmark with an
uncased BERT base model (the checkpoint `bert-base-uncased`). All experiments ran on 8 V100 GPUs with a total train
batch size of 24. Some of these tasks have a small dataset and training can lead to high variance in the results
between different runs. We report the median on 5 runs (with different seeds) for each of the metrics.
@@ -9,6 +9,12 @@ DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and l
For more information on DistilBERT, please refer to our [detailed blog post](https://medium.com/huggingface/smaller-faster-cheaper-lighter-introducing-distilbert-a-distilled-version-of-bert-8cf3380435b5
).
## Setup
This part of the library has only be tested with Python3.6+. There are few specific dependencies to install before launching a distillation, you can install them with the command `pip install -r requirements.txt`.
**Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breakings changes compared to v1.1.0). It is important to note that there is a small internal bug in the current version of PyTorch available on pip that causes a memory leak in our training/distillation. It has been recently fixed and will likely be integrated into the next release. For the moment, we recommend to [compile PyTorch from source](https://github.com/pytorch/pytorch#from-source). Please refer to [issue 1179](https://github.com/huggingface/pytorch-transformers/issues/1179) for more details.
## How to use DistilBERT
PyTorch-Transformers includes two pre-trained DistilBERT models, currently only provided for English (we are investigating the possibility to train and release a multilingual version of DistilBERT):
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
return_unused_kwargs: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
Examples::
config = AutoConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
config = AutoConfig.from_pretrained('./test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`