Unverified Commit 3e9fdcf0 authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

[DOC] fix doc examples for bart-like models (#15093)

* fix doc examples

* remove double colons
parent 61d18ae0
......@@ -534,33 +534,40 @@ BART_START_DOCSTRING = r"""
"""
BART_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig
```python
>>> from transformers import BartTokenizer, BartForConditionalGeneration
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> tokenizer =
BartTokenizer.from_pretrained('facebook/bart-large-cnn')
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5,
early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example::
Mask filling example:
>>> from transformers import BartTokenizer, BartForConditionalGeneration >>> tokenizer =
BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many
carbs."
```python
>>> from transformers import BartTokenizer, BartForConditionalGeneration
>>> model = BartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids =
tokenizer([TXT], return_tensors='pt')['input_ids'] >>> logits = model(input_ids).logits
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0,
masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5)
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> tokenizer.decode(predictions).split()
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
```
"""
BART_INPUTS_DOCSTRING = r"""
......
......@@ -1506,32 +1506,40 @@ class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel):
FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example::
Summarization example:
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
```python
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') >>> tokenizer =
BartTokenizer.from_pretrained('facebook/bart-large-cnn')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='jax')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']).sequences >>>
print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
Mask filling example:
Mask filling example::
```python
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration >>> tokenizer =
BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many
carbs."
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids =
tokenizer([TXT], return_tensors='jax')['input_ids'] >>> logits = model(input_ids).logits
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="jax")["input_ids"]
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item() >>> probs =
jax.nn.softmax(logits[0, masked_index], axis=0) >>> values, predictions = jax.lax.top_k(probs)
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> tokenizer.decode(predictions).split()
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
......
......@@ -510,29 +510,36 @@ BART_START_DOCSTRING = r"""
BART_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import BartTokenizer, TFBartForConditionalGeneration, BartConfig
```python
>>> from transformers import BartTokenizer, TFBartForConditionalGeneration
>>> model = TFBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> tokenizer =
BartTokenizer.from_pretrained('facebook/bart-large')
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='tf')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5,
early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example::
Mask filling example:
>>> from transformers import BartTokenizer, TFBartForConditionalGeneration >>> tokenizer =
BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many
carbs."
```python
>>> from transformers import BartTokenizer, TFBartForConditionalGeneration
>>> model = TFBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids =
tokenizer([TXT], return_tensors='tf')['input_ids'] >>> logits = model(input_ids).logits >>> probs =
tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token
```
"""
......
......@@ -1619,19 +1619,21 @@ BIGBIRD_PEGASUS_START_DOCSTRING = r"""
"""
BIGBIRD_PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import PegasusTokenizer, BigBirdPegasusForConditionalGeneration, BigBirdPegasusConfig
```python
>>> from transformers import PegasusTokenizer, BigBirdPegasusForConditionalGeneration
>>> model = BigBirdPegasusForConditionalGeneration.from_pretrained('google/bigbird-pegasus-large-arxiv') >>>
tokenizer = PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv')
>>> model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> tokenizer = PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=4096, return_tensors='pt', truncation=True)
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=4096, return_tensors="pt", truncation=True)
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5,
early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
BIGBIRD_PEGASUS_INPUTS_DOCSTRING = r"""
......
......@@ -1482,7 +1482,7 @@ class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedM
FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example::
Summarization example:
>>> from transformers import BlenderbotSmallTokenizer, FlaxBlenderbotSmallForConditionalGeneration
......@@ -1495,7 +1495,7 @@ FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']).sequences >>>
print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
Mask filling example::
Mask filling example:
>>> from transformers import BlenderbotSmallTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>>
tokenizer = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot_small-90M') >>> TXT = "My friends are
......
......@@ -199,16 +199,19 @@ FSMT_START_DOCSTRING = r"""
FSMT_GENERATION_EXAMPLE = r"""
Translation example::
from transformers import FSMTTokenizer, FSMTForConditionalGeneration
mname = "facebook/wmt19-ru-en" model = FSMTForConditionalGeneration.from_pretrained(mname) tokenizer =
FSMTTokenizer.from_pretrained(mname)
src_text = "Машинное обучение - это здорово, не так ли?" input_ids = tokenizer.encode(src_text,
return_tensors='pt') outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3) for i, output in
enumerate(outputs):
decoded = tokenizer.decode(output, skip_special_tokens=True) print(f"{i}: {decoded})
# 1: Machine learning is great, isn't it? ...
```python
>>> from transformers import FSMTTokenizer, FSMTForConditionalGeneration
>>> mname = "facebook/wmt19-ru-en"
>>> model = FSMTForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = FSMTTokenizer.from_pretrained(mname)
>>> src_text = "Машинное обучение - это здорово, не так ли?"
>>> input_ids = tokenizer(src_text, return_tensors="pt")
>>> outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
"Machine learning is great, isn't it?"
```
"""
......
......@@ -1454,36 +1454,41 @@ LED_START_DOCSTRING = r"""
"""
LED_GENERATION_EXAMPLE = r"""
Summarization example::
>>> import torch >>> from transformers import LEDTokenizer, LEDForConditionalGeneration
>>> model = LEDForConditionalGeneration.from_pretrained('allenai/led-large-16384-arxiv') >>> tokenizer =
LEDTokenizer.from_pretrained('allenai/led-large-16384-arxiv')
>>> ARTICLE_TO_SUMMARIZE = '''Transformers (Vaswani et al., 2017) have achieved state-of-the-art ... results in
a wide range of natural language tasks including generative ... language modeling (Dai et al., 2019; Radford et
al., 2019) and discriminative ... language understanding (Devlin et al., 2019). This success is partly due to
... the self-attention component which enables the network to capture contextual ... information from the
entire sequence. While powerful, the memory and computational ... requirements of self-attention grow
quadratically with sequence length, making ... it infeasible (or very expensive) to process long sequences. ...
... To address this limitation, we present Longformer, a modified Transformer ... architecture with a
self-attention operation that scales linearly with the ... sequence length, making it versatile for processing
long documents (Fig 1). This ... is an advantage for natural language tasks such as long document
classification, ... question answering (QA), and coreference resolution, where existing approaches ...
partition or shorten the long context into smaller sequences that fall within the ... typical 512 token limit
of BERT-style pretrained models. Such partitioning could ... potentially result in loss of important
cross-partition information, and to ... mitigate this problem, existing methods often rely on complex
architectures to ... address such interactions. On the other hand, our proposed Longformer is able to ... build
contextual representations of the entire context using multiple layers of ... attention, reducing the need for
task-specific architectures.''' >>> inputs = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
>>> # Global attention on the first token (cf. Beltagy et al. 2020) >>> global_attention_mask =
torch.zeros_like(inputs) >>> global_attention_mask[:, 0] = 1
>>> # Generate Summary >>> summary_ids = model.generate(inputs, global_attention_mask=global_attention_mask,
... num_beams=3, max_length=32, early_stopping=True) >>> print(tokenizer.decode(summary_ids[0],
skip_special_tokens=True, clean_up_tokenization_spaces=True))
Summarization example:
```python
>>> import torch
>>> from transformers import LEDTokenizer, LEDForConditionalGeneration
>>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-large-16384-arxiv")
>>> tokenizer = LEDTokenizer.from_pretrained("allenai/led-large-16384-arxiv")
>>> ARTICLE_TO_SUMMARIZE = '''Transformers (Vaswani et al., 2017) have achieved state-of-the-art
... results in a wide range of natural language tasks including generative language modeling
... (Dai et al., 2019; Radford et al., 2019) and discriminative ... language understanding (Devlin et al., 2019).
... This success is partly due to the self-attention component which enables the network to capture contextual
... information from the entire sequence. While powerful, the memory and computational requirements of
... self-attention grow quadratically with sequence length, making it infeasible (or very expensive) to
... process long sequences. To address this limitation, we present Longformer, a modified Transformer
... architecture with a self-attention operation that scales linearly with the sequence length, making it
... versatile for processing long documents (Fig 1). This is an advantage for natural language tasks such as
... long document classification, question answering (QA), and coreference resolution, where existing approaches
... partition or shorten the long context into smaller sequences that fall within the typical 512 token limit
... of BERT-style pretrained models. Such partitioning could potentially result in loss of important
... cross-partition information, and to mitigate this problem, existing methods often rely on complex
... architectures to address such interactions. On the other hand, our proposed Longformer is able to build
... contextual representations of the entire context using multiple layers of attention, reducing the need for
... task-specific architectures.'''
>>> inputs = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors="pt")
>>> # Global attention on the first token (cf. Beltagy et al. 2020)
>>> global_attention_mask = torch.zeros_like(inputs)
>>> global_attention_mask[:, 0] = 1
>>> # Generate Summary
>>> summary_ids = model.generate(inputs, global_attention_mask=global_attention_mask, num_beams=3, max_length=32)
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
```
"""
LED_INPUTS_DOCSTRING = r"""
......
......@@ -566,17 +566,19 @@ M2M_100_START_DOCSTRING = r"""
M2M_100_GENERATION_EXAMPLE = r"""
Translation example::
>>> from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
```python
>>> from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
>>> model = M2M100ForConditionalGeneration.from_pretrained('facebook/m2m100_418M') >>> tokenizer =
M2M100Tokenizer.from_pretrained('facebook/m2m100_418M')
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
>>> text_to_translate = "Life is like a box of chocolates" >>> model_inputs = tokenizer(text_to_translate,
return_tensors='pt')
>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
>>> # translate to French >>> gen_tokens = model.generate( **model_inputs,
forced_bos_token_id=tokenizer.get_lang_id("fr")) >>> print(tokenizer.batch_decode(gen_tokens,
skip_special_tokens=True))
>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("fr"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
```
"""
M2M_100_INPUTS_DOCSTRING = r"""
......
......@@ -1530,34 +1530,41 @@ class FlaxMBartForConditionalGeneration(FlaxMBartPreTrainedModel):
FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING = r"""
Returns:
Summarization example::
Summarization example:
>>> from transformers import MBartTokenizer, FlaxMBartForConditionalGeneration, MBartConfig
```python
>>> from transformers import MBartTokenizer, FlaxMBartForConditionalGeneration, MBartConfig
>>> model = FlaxMBartForConditionalGeneration.from_pretrained('facebook/mbart-large-cc25') >>> tokenizer =
MBartTokenizer.from_pretrained('facebook/mbart-large-cc25')
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5,
early_stopping=True).sequences >>> print([tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example::
Mask filling example:
>>> from transformers import MBartTokenizer, FlaxMBartForConditionalGeneration >>> tokenizer =
MBartTokenizer.from_pretrained('facebook/mbart-large-cc25') >>> # de_DE is the language symbol id <LID> for
German >>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
```python
>>> from transformers import MBartTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained('facebook/mbart-large-cc25') >>> input_ids =
tokenizer([TXT], add_special_tokens=False, return_tensors='np')['input_ids'] >>> logits =
model(input_ids).logits
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item() >>> probs = logits[0,
masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5)
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"]
>>> tokenizer.decode(predictions).split()
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
......
......@@ -532,34 +532,42 @@ MBART_START_DOCSTRING = r"""
"""
MBART_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration, MBartConfig
```python
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained('facebook/mbart-large-cc25') >>> tokenizer =
MBartTokenizer.from_pretrained('facebook/mbart-large-cc25')
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5,
early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example::
Mask filling example:
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration >>> tokenizer =
MBartTokenizer.from_pretrained('facebook/mbart-large-cc25') >>> # de_DE is the language symbol id <LID> for
German >>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
```python
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained('facebook/mbart-large-cc25') >>> input_ids =
tokenizer([TXT], add_special_tokens=False, return_tensors='pt')['input_ids'] >>> logits =
model(input_ids).logits
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0,
masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5)
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> tokenizer.decode(predictions).split()
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
```
"""
MBART_INPUTS_DOCSTRING = r"""
......
......@@ -591,29 +591,38 @@ MBART_INPUTS_DOCSTRING = r"""
"""
MBART_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import MBartTokenizer, TFMBartForConditionalGeneration, MBartConfig
```python
>>> from transformers import MBartTokenizer, TFMBartForConditionalGeneration, MBartConfig
>>> model = MBartForConditionalGeneration.from_pretrained('facebook/mbart-large-cc25') >>> tokenizer =
MBartTokenizer.from_pretrained('facebook/mbart-large-cc25')
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen." >>> inputs =
tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='tf')
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5,
early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example::
Mask filling example:
>>> from transformers import MBartTokenizer, TFMBartForConditionalGeneration >>> tokenizer =
MBartTokenizer.from_pretrained('facebook/mbart-large-cc25') >>> # de_DE is the language symbol id <LID> for
German >>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
```python
>>> from transformers import MBartTokenizer, TFMBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained('facebook/mbart-large-cc25') >>> input_ids =
tokenizer([TXT], add_special_tokens=False, return_tensors='tf')['input_ids'] >>> logits =
model(input_ids).logits >>> probs = tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token
```
"""
......
......@@ -1480,7 +1480,7 @@ class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel):
FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example::
Summarization example:
>>> from transformers import PegasusTokenizer, FlaxPegasusForConditionalGeneration
......@@ -1493,7 +1493,7 @@ FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']).sequences >>>
print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
Mask filling example::
Mask filling example:
>>> from transformers import PegasusTokenizer, FlaxPegasusForConditionalGeneration >>> tokenizer =
PegasusTokenizer.from_pretrained('google/pegasus-large') >>> TXT = "My friends are <mask> but they eat too many
......
......@@ -512,20 +512,25 @@ PEGASUS_START_DOCSTRING = r"""
"""
PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import PegasusTokenizer, PegasusForConditionalGeneration
```python
>>> from transformers import PegasusTokenizer, PegasusForConditionalGeneration
>>> model = PegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum') >>> tokenizer =
PegasusTokenizer.from_pretrained('google/pegasus-xsum')
>>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
>>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
>>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high
winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers
were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday
tomorrow." ... ) >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']) >>> print([tokenizer.decode(g,
skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"])
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
PEGASUS_INPUTS_DOCSTRING = r"""
......
......@@ -555,20 +555,25 @@ PEGASUS_START_DOCSTRING = r"""
"""
PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import PegasusTokenizer, TFPegasusForConditionalGeneration
```python
>>> from transformers import PegasusTokenizer, TFPegasusForConditionalGeneration
>>> model = TFPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum') >>> tokenizer =
PegasusTokenizer.from_pretrained('google/pegasus-xsum')
>>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
>>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
>>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high
winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers
were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday
tomorrow." ... ) >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='tf')
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf")
>>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']) >>> print([tokenizer.decode(g,
skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"])
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
PEGASUS_INPUTS_DOCSTRING = r"""
......
......@@ -2605,35 +2605,40 @@ class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{coo
FLAX_{{cookiecutter.uppercase_modelname}}_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example::
Summarization example:
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids']).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids']).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example::
Mask filling example:
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> input_ids = tokenizer([TXT], return_tensors='np')['input_ids']
>>> logits = model(input_ids).logits
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors='np')['input_ids']
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> tokenizer.decode(predictions).split()
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
......
......@@ -2067,19 +2067,21 @@ class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
"""
{{cookiecutter.uppercase_modelname}}_GENERATION_EXAMPLE = r"""
Summarization example::
Summarization example:
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}Config
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5)
>>> print(tokenizer.decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment