Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3e70a207
Unverified
Commit
3e70a207
authored
Feb 13, 2024
by
Joao Gante
Committed by
GitHub
Feb 13, 2024
Browse files
Static Cache: load models with MQA or GQA (#28975)
parent
da20209d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
49 additions
and
3 deletions
+49
-3
src/transformers/cache_utils.py
src/transformers/cache_utils.py
+4
-2
tests/test_cache_utils.py
tests/test_cache_utils.py
+45
-1
No files found.
src/transformers/cache_utils.py
View file @
3e70a207
...
@@ -351,10 +351,12 @@ class StaticCache(Cache):
...
@@ -351,10 +351,12 @@ class StaticCache(Cache):
self
.
max_batch_size
=
max_batch_size
self
.
max_batch_size
=
max_batch_size
self
.
max_cache_len
=
config
.
max_position_embeddings
if
max_cache_len
is
None
else
max_cache_len
self
.
max_cache_len
=
config
.
max_position_embeddings
if
max_cache_len
is
None
else
max_cache_len
self
.
head_dim
=
config
.
hidden_size
//
config
.
num_attention_heads
self
.
head_dim
=
config
.
hidden_size
//
config
.
num_attention_heads
self
.
num_heads
=
config
.
num_attention_heads
self
.
num_key_value_heads
=
(
config
.
num_attention_heads
if
config
.
num_key_value_heads
is
None
else
config
.
num_key_value_heads
)
self
.
dtype
=
config
.
torch_dtype
if
config
.
torch_dtype
is
not
None
else
dtype
self
.
dtype
=
config
.
torch_dtype
if
config
.
torch_dtype
is
not
None
else
dtype
cache_shape
=
(
max_batch_size
,
self
.
num_heads
,
self
.
max_cache_len
,
self
.
head_dim
)
cache_shape
=
(
max_batch_size
,
self
.
num_
key_value_
heads
,
self
.
max_cache_len
,
self
.
head_dim
)
self
.
key_cache
:
torch
.
Tensor
=
torch
.
zeros
(
cache_shape
,
dtype
=
self
.
dtype
,
device
=
device
)
self
.
key_cache
:
torch
.
Tensor
=
torch
.
zeros
(
cache_shape
,
dtype
=
self
.
dtype
,
device
=
device
)
self
.
value_cache
:
torch
.
Tensor
=
torch
.
zeros
(
cache_shape
,
dtype
=
self
.
dtype
,
device
=
device
)
self
.
value_cache
:
torch
.
Tensor
=
torch
.
zeros
(
cache_shape
,
dtype
=
self
.
dtype
,
device
=
device
)
self
.
seen_tokens
=
0
self
.
seen_tokens
=
0
...
...
tests/test_cache_utils.py
View file @
3e70a207
...
@@ -35,14 +35,16 @@ if is_torch_available():
...
@@ -35,14 +35,16 @@ if is_torch_available():
AutoModelForCausalLM
,
AutoModelForCausalLM
,
AutoTokenizer
,
AutoTokenizer
,
DynamicCache
,
DynamicCache
,
LlamaConfig
,
LlamaForCausalLM
,
LlamaForCausalLM
,
SinkCache
,
SinkCache
,
StaticCache
,
)
)
@
require_torch
@
require_torch
class
CacheTest
(
unittest
.
TestCase
):
class
CacheTest
(
unittest
.
TestCase
):
def
test_
cache_equivalence
(
self
):
def
test_
dynamic_cache_retrocompatibility
(
self
):
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
legacy_cache
=
()
legacy_cache
=
()
new_cache
=
DynamicCache
()
new_cache
=
DynamicCache
()
...
@@ -120,6 +122,48 @@ class CacheTest(unittest.TestCase):
...
@@ -120,6 +122,48 @@ class CacheTest(unittest.TestCase):
)
)
)
)
def
test_static_cache_mha_mqa_gqa
(
self
):
"""
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query
attention (MQA)
"""
def
_random_kvs
(
config
):
# shape for key and values: (batch_size, num_heads, seq_len, head_dim)
random_keys
=
torch
.
rand
(
(
1
,
config
.
num_key_value_heads
,
1
,
config
.
hidden_size
//
config
.
num_attention_heads
),
device
=
torch_device
,
)
random_values
=
torch
.
rand
(
(
1
,
config
.
num_key_value_heads
,
1
,
config
.
hidden_size
//
config
.
num_attention_heads
),
device
=
torch_device
,
)
return
random_keys
,
random_values
mha_config
=
LlamaConfig
(
num_attention_heads
=
32
)
mha_static_cache
=
StaticCache
(
config
=
mha_config
,
max_batch_size
=
1
,
max_cache_len
=
10
,
device
=
torch_device
)
cached_keys
,
cached_values
=
mha_static_cache
.
update
(
*
_random_kvs
(
mha_config
),
0
,
cache_kwargs
=
{
"position_ids"
:
torch
.
arange
(
1
)}
)
self
.
assertTrue
(
cached_keys
.
shape
==
(
1
,
32
,
10
,
128
))
self
.
assertTrue
(
cached_values
.
shape
==
(
1
,
32
,
10
,
128
))
gqa_config
=
LlamaConfig
(
num_attention_heads
=
32
,
num_key_value_heads
=
4
)
gqa_static_cache
=
StaticCache
(
config
=
gqa_config
,
max_batch_size
=
1
,
max_cache_len
=
10
,
device
=
torch_device
)
cached_keys
,
cached_values
=
gqa_static_cache
.
update
(
*
_random_kvs
(
gqa_config
),
0
,
cache_kwargs
=
{
"position_ids"
:
torch
.
arange
(
1
)}
)
self
.
assertTrue
(
cached_keys
.
shape
==
(
1
,
4
,
10
,
128
))
self
.
assertTrue
(
cached_values
.
shape
==
(
1
,
4
,
10
,
128
))
mqa_config
=
LlamaConfig
(
num_attention_heads
=
32
,
num_key_value_heads
=
1
)
mqa_static_cache
=
StaticCache
(
config
=
mqa_config
,
max_batch_size
=
1
,
max_cache_len
=
10
,
device
=
torch_device
)
cached_keys
,
cached_values
=
mqa_static_cache
.
update
(
*
_random_kvs
(
mqa_config
),
0
,
cache_kwargs
=
{
"position_ids"
:
torch
.
arange
(
1
)}
)
self
.
assertTrue
(
cached_keys
.
shape
==
(
1
,
1
,
10
,
128
))
self
.
assertTrue
(
cached_values
.
shape
==
(
1
,
1
,
10
,
128
))
@
require_torch_gpu
@
require_torch_gpu
@
slow
@
slow
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment