Unverified Commit 3e47d19c authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Add missing ckpt in config docs (#16900)



* add missing ckpt in config docs

* add more missing ckpt in config docs

* fix wrong ckpts

* fix realm ckpt

* fix s2t2

* fix xlm_roberta ckpt

* Fix for deberta v2

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* use only one checkpoint for DPR

* Apply suggestions from code review
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
parent 3a71e94a
......@@ -38,7 +38,7 @@ class AlbertConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
a configuration with the defaults will yield a similar configuration to that of the ALBERT
[xxlarge](https://huggingface.co/albert-xxlarge-v2) architecture.
[albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -26,7 +26,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/beit-base-patch16-224-in22k": "https://huggingface.co/microsoft/beit-base-patch16-224-in22k/resolve/main/config.json",
"microsoft/beit-base-patch16-224-pt22k": "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json",
# See all BEiT models at https://huggingface.co/models?filter=beit
}
......@@ -36,7 +36,7 @@ class BeitConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BEiT
[microsoft/beit-base-patch16-224-in22k](https://huggingface.co/microsoft/beit-base-patch16-224-in22k) architecture.
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 8092):
......@@ -104,10 +104,10 @@ class BeitConfig(PretrainedConfig):
```python
>>> from transformers import BeitModel, BeitConfig
>>> # Initializing a BEiT beit-base-patch16-224-in22k style configuration
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
>>> configuration = BeitConfig()
>>> # Initializing a model from the beit-base-patch16-224-in22k style configuration
>>> # Initializing a model from the beit-base-patch16-224-pt22k style configuration
>>> model = BeitModel(configuration)
>>> # Accessing the model configuration
......
......@@ -21,6 +21,9 @@ class BertGenerationConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to
instantiate a BertGeneration model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration
[google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -35,7 +35,8 @@ CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class CamembertConfig(RobertaConfig):
"""
This class overrides [`RobertaConfig`]. Please check the superclass for the appropriate documentation alongside
usage examples.
usage examples. Instantiating a configuration with the defaults will yield a similar configuration to that of the
Camembert [camembert-base](https://huggingface.co/camembert-base) architecture.
"""
model_type = "camembert"
......
......@@ -33,7 +33,7 @@ class DebertaV2Config(PretrainedConfig):
This is the configuration class to store the configuration of a [`DebertaV2Model`]. It is used to instantiate a
DeBERTa-v2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the DeBERTa
[microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-base) architecture.
[microsoft/deberta-v2-xlarge](https://huggingface.co/microsoft/deberta-v2-xlarge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -35,7 +35,11 @@ class DPRConfig(PretrainedConfig):
[`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*.
This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a
[`DPRReader`]. It is used to instantiate the components of the DPR model.
[`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments,
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
configuration to that of the DPRContextEncoder
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
architecture.
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.
......
......@@ -36,6 +36,8 @@ class FlaubertConfig(XLMConfig):
"""
This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
[flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -32,7 +32,7 @@ class FNetConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the FNet
[fnet-base](https://huggingface.co/google/fnet-base) architecture.
[google/fnet-base](https://huggingface.co/google/fnet-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -41,7 +41,9 @@ class DecoderConfig(PretrainedConfig):
class FSMTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FSMTModel`]. It is used to instantiate a FSMT
model according to the specified arguments, defining the model architecture.
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the FSMT
[facebook/wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -21,8 +21,8 @@ from ...utils import logging
logger = logging.get_logger(__name__)
GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/gdpdepth-kitti/resolve/main/config.json",
# See all GLPN models at https://huggingface.co/models?filter=gdpdepth
"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json",
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
......@@ -31,7 +31,7 @@ class GLPNConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GLPN
[kaist/gdpdepth-kitti](https://huggingface.co/kaist/gdpdepth-kitti) architecture.
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......@@ -81,10 +81,10 @@ class GLPNConfig(PretrainedConfig):
```python
>>> from transformers import GLPNModel, GLPNConfig
>>> # Initializing a GLPN kaist/gdpdepth-kitti style configuration
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
>>> configuration = GLPNConfig()
>>> # Initializing a model from the kaist/gdpdepth-kitti style configuration
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
>>> model = GLPNModel(configuration)
>>> # Accessing the model configuration
......
......@@ -40,7 +40,7 @@ class GPT2Config(PretrainedConfig):
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPT-2
[small](https://huggingface.co/gpt2) architecture.
[gpt2](https://huggingface.co/gpt2) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -36,7 +36,7 @@ class GPTNeoConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT
Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with
the defaults will yield a similar configuration to that of the GPTNeo
[gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture.
[EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -35,7 +35,7 @@ class GPTJConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GPT-J
[gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
for more information.
......
......@@ -36,7 +36,9 @@ IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class IBertConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`IBertModel`]. It is used to instantiate a I-BERT
model according to the specified arguments,
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the IBERT
[kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -27,8 +27,8 @@ from ..bert.configuration_bert import BertConfig
logger = logging.get_logger(__name__)
LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"layoutlm-base-uncased": "https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json",
"layoutlm-large-uncased": "https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json",
"microsoft/layoutlm-base-uncased": "https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json",
"microsoft/layoutlm-large-uncased": "https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json",
}
......@@ -37,7 +37,7 @@ class LayoutLMConfig(BertConfig):
This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a
LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the LayoutLM
[layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture.
[microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture.
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
documentation from [`BertConfig`] for more information.
......
......@@ -37,8 +37,9 @@ class LongformerConfig(RobertaConfig):
This is the configuration class to store the configuration of a [`LongformerModel`]. It is used to instantiate an
Longformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the RoBERTa
[roberta-base](https://huggingface.co/roberta-base) architecture with a sequence length 4,096.
configuration with the defaults will yield a similar configuration to that of the LongFormer
[allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) architecture with a sequence
length 4,096.
The [`LongformerConfig`] class directly inherits [`RobertaConfig`]. It reuses the same defaults. Please check the
parent class for more information.
......
......@@ -29,7 +29,9 @@ LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class LukeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LukeModel`]. It is used to instantiate a LUKE
model according to the specified arguments, defining the model architecture.
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LUKE
[studio-ousia/luke-base](https://huggingface.co/studio-ousia/luke-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -22,14 +22,16 @@ from ...utils import logging
logger = logging.get_logger(__name__)
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"unc-nlp/lxmert-base-uncased": "",
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class LxmertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LxmertModel`] or a [`TFLxmertModel`]. It is used
to instantiate a LXMERT model according to the specified arguments, defining the model architecture.
to instantiate a LXMERT model according to the specified arguments, defining the model architecture. Instantiating
a configuration with the defaults will yield a similar configuration to that of the Lxmert
[unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -36,7 +36,7 @@ class M2M100Config(PretrainedConfig):
This is the configuration class to store the configuration of a [`M2M100Model`]. It is used to instantiate an
M2M100 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the M2M100
[m2m100_418M](https://huggingface.co/facebook/m2m100_418M) architecture.
[facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -35,9 +35,9 @@ class MaskFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MaskFormerModel`]. It is used to instantiate a
MaskFormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
"facebook/maskformer-swin-base-ade" architecture trained on
[ADE20k-150](https://huggingface.co/datasets/scene_parse_150).
configuration with the defaults will yield a similar configuration to that of the MaskFormer
[facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade) architecture trained
on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment