Unverified Commit 3dd57b15 authored by Dahlbomii's avatar Dahlbomii Committed by GitHub
Browse files

Type hints added to Speech to Text (#16506)



* Type hints added

* return hints added

* Update src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
parent 1efca4e6
...@@ -16,8 +16,9 @@ ...@@ -16,8 +16,9 @@
import random import random
from typing import Dict, Optional, Tuple from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf import tensorflow as tf
from ...activations_tf import get_tf_activation, glu from ...activations_tf import get_tf_activation, glu
...@@ -29,6 +30,7 @@ from ...modeling_tf_outputs import ( ...@@ -29,6 +30,7 @@ from ...modeling_tf_outputs import (
) )
from ...modeling_tf_utils import ( from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss, TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel, TFPreTrainedModel,
TFSharedEmbeddings, TFSharedEmbeddings,
keras_serializable, keras_serializable,
...@@ -1245,23 +1247,23 @@ class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel): ...@@ -1245,23 +1247,23 @@ class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel):
) )
def call( def call(
self, self,
input_features=None, input_features: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids=None, decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask=None, decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs=None, encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
training=False, training: bool = False,
**kwargs **kwargs
): ) -> Union[Tuple, TFSeq2SeqModelOutput]:
outputs = self.model( outputs = self.model(
input_features=input_features, input_features=input_features,
attention_mask=attention_mask, attention_mask=attention_mask,
...@@ -1333,24 +1335,24 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus ...@@ -1333,24 +1335,24 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
self, self,
input_features=None, input_features: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids=None, decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask=None, decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask=None, decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask=None, cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs=None, encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values=None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds=None, decoder_inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache=None, use_cache: Optional[bool] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
training=False, training: Optional[bool] = False,
**kwargs **kwargs
): ) -> Union[Tuple, TFSeq2SeqLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment