Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3922a249
"git@developer.sourcefind.cn:OpenDAS/torchaudio.git" did not exist on "9cd126a9ac823d05b59f3e7bda9e6ef3c5fd4fab"
Commit
3922a249
authored
Jan 15, 2020
by
Lysandre
Committed by
Lysandre Debut
Jan 23, 2020
Browse files
TF ALBERT + TF Utilities + Fix warnings
parent
00df3d4d
Changes
6
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
148 additions
and
126 deletions
+148
-126
docs/source/main_classes/optimizer_schedules.rst
docs/source/main_classes/optimizer_schedules.rst
+2
-5
docs/source/model_doc/albert.rst
docs/source/model_doc/albert.rst
+1
-1
src/transformers/file_utils.py
src/transformers/file_utils.py
+1
-1
src/transformers/modeling_albert.py
src/transformers/modeling_albert.py
+5
-0
src/transformers/modeling_tf_albert.py
src/transformers/modeling_tf_albert.py
+127
-116
src/transformers/modeling_tf_utils.py
src/transformers/modeling_tf_utils.py
+12
-3
No files found.
docs/source/main_classes/optimizer_schedules.rst
View file @
3922a249
...
@@ -20,14 +20,12 @@ The ``.optimization`` module provides:
...
@@ -20,14 +20,12 @@ The ``.optimization`` module provides:
:members:
:members:
.. autofunction:: transformers.create_optimizer
.. autofunction:: transformers.create_optimizer
:members:
Schedules
Schedules
----------------------------------------------------
----------------------------------------------------
Learning Rate Schedules
Learning Rate Schedules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: transformers.get_constant_schedule
.. autofunction:: transformers.get_constant_schedule
...
@@ -39,7 +37,6 @@ Learning Rate Schedules
...
@@ -39,7 +37,6 @@ Learning Rate Schedules
.. autofunction:: transformers.get_cosine_schedule_with_warmup
.. autofunction:: transformers.get_cosine_schedule_with_warmup
:members:
.. image:: /imgs/warmup_cosine_schedule.png
.. image:: /imgs/warmup_cosine_schedule.png
:target: /imgs/warmup_cosine_schedule.png
:target: /imgs/warmup_cosine_schedule.png
...
@@ -63,7 +60,7 @@ Learning Rate Schedules
...
@@ -63,7 +60,7 @@ Learning Rate Schedules
``Warmup``
``Warmup``
~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Warm
u
p
.. autoclass:: transformers.Warm
U
p
:members:
:members:
Gradient Strategies
Gradient Strategies
...
...
docs/source/model_doc/albert.rst
View file @
3922a249
...
@@ -59,7 +59,7 @@ AlbertForMaskedLM
...
@@ -59,7 +59,7 @@ AlbertForMaskedLM
AlbertForSequenceClassification
AlbertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.AlbertForSequenceClassification
.. autoclass:: transformers.AlbertForSequenceClassification
:members:
:members:
...
...
src/transformers/file_utils.py
View file @
3922a249
...
@@ -121,7 +121,7 @@ def add_start_docstrings_to_callable(*docstr):
...
@@ -121,7 +121,7 @@ def add_start_docstrings_to_callable(*docstr):
Although the recipe for forward pass needs to be defined within
Although the recipe for forward pass needs to be defined within
this function, one should call the :class:`Module` instance afterwards
this function, one should call the :class:`Module` instance afterwards
instead of this since the former takes care of running the
instead of this since the former takes care of running the
re
gistered hook
s while the latter silently ignores them.
p
re
and post processing step
s while the latter silently ignores them.
"""
"""
fn
.
__doc__
=
intro
+
note
+
""
.
join
(
docstr
)
+
(
fn
.
__doc__
if
fn
.
__doc__
is
not
None
else
""
)
fn
.
__doc__
=
intro
+
note
+
""
.
join
(
docstr
)
+
(
fn
.
__doc__
if
fn
.
__doc__
is
not
None
else
""
)
return
fn
return
fn
...
...
src/transformers/modeling_albert.py
View file @
3922a249
...
@@ -423,6 +423,10 @@ ALBERT_INPUTS_DOCSTRING = r"""
...
@@ -423,6 +423,10 @@ ALBERT_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the self-attention modules.
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
Mask values selected in ``[0, 1]``:
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
"""
...
@@ -478,6 +482,7 @@ class AlbertModel(AlbertPreTrainedModel):
...
@@ -478,6 +482,7 @@ class AlbertModel(AlbertPreTrainedModel):
inner_group_idx
=
int
(
layer
-
group_idx
*
self
.
config
.
inner_group_num
)
inner_group_idx
=
int
(
layer
-
group_idx
*
self
.
config
.
inner_group_num
)
self
.
encoder
.
albert_layer_groups
[
group_idx
].
albert_layers
[
inner_group_idx
].
attention
.
prune_heads
(
heads
)
self
.
encoder
.
albert_layer_groups
[
group_idx
].
albert_layers
[
inner_group_idx
].
attention
.
prune_heads
(
heads
)
@
add_start_docstrings_to_callable
(
ALBERT_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
=
None
,
input_ids
=
None
,
...
...
src/transformers/modeling_tf_albert.py
View file @
3922a249
This diff is collapsed.
Click to expand it.
src/transformers/modeling_tf_utils.py
View file @
3922a249
...
@@ -91,7 +91,12 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -91,7 +91,12 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
self
.
config
=
config
self
.
config
=
config
def
get_input_embeddings
(
self
):
def
get_input_embeddings
(
self
):
""" Get model's input embeddings
"""
Returns the model's input embeddings.
Returns:
:obj:`tf.keras.layers.Layer`:
A torch module mapping vocabulary to hidden states.
"""
"""
base_model
=
getattr
(
self
,
self
.
base_model_prefix
,
self
)
base_model
=
getattr
(
self
,
self
.
base_model_prefix
,
self
)
if
base_model
is
not
self
:
if
base_model
is
not
self
:
...
@@ -100,8 +105,12 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
...
@@ -100,8 +105,12 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin):
raise
NotImplementedError
raise
NotImplementedError
def
get_output_embeddings
(
self
):
def
get_output_embeddings
(
self
):
""" Get model's output embeddings
"""
Return None if the model doesn't have output embeddings
Returns the model's output embeddings.
Returns:
:obj:`tf.keras.layers.Layer`:
A torch module mapping hidden states to vocabulary.
"""
"""
return
None
# Overwrite for models with output embeddings
return
None
# Overwrite for models with output embeddings
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment