Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
386ef34e
Unverified
Commit
386ef34e
authored
Apr 11, 2024
by
NielsRogge
Committed by
GitHub
Apr 11, 2024
Browse files
[Processor classes] Update docs (#29698)
Update docs
parent
e516d1b1
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
13 additions
and
26 deletions
+13
-26
src/transformers/models/align/processing_align.py
src/transformers/models/align/processing_align.py
+1
-2
src/transformers/models/altclip/processing_altclip.py
src/transformers/models/altclip/processing_altclip.py
+1
-2
src/transformers/models/chinese_clip/processing_chinese_clip.py
...ansformers/models/chinese_clip/processing_chinese_clip.py
+1
-2
src/transformers/models/clip/processing_clip.py
src/transformers/models/clip/processing_clip.py
+1
-2
src/transformers/models/clipseg/processing_clipseg.py
src/transformers/models/clipseg/processing_clipseg.py
+1
-2
src/transformers/models/fuyu/processing_fuyu.py
src/transformers/models/fuyu/processing_fuyu.py
+1
-2
src/transformers/models/git/processing_git.py
src/transformers/models/git/processing_git.py
+1
-2
src/transformers/models/llava/processing_llava.py
src/transformers/models/llava/processing_llava.py
+1
-2
src/transformers/models/oneformer/processing_oneformer.py
src/transformers/models/oneformer/processing_oneformer.py
+1
-2
src/transformers/models/owlv2/processing_owlv2.py
src/transformers/models/owlv2/processing_owlv2.py
+1
-2
src/transformers/models/owlvit/processing_owlvit.py
src/transformers/models/owlvit/processing_owlvit.py
+1
-2
src/transformers/models/siglip/processing_siglip.py
src/transformers/models/siglip/processing_siglip.py
+1
-2
src/transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py
..._text_dual_encoder/processing_vision_text_dual_encoder.py
+1
-2
No files found.
src/transformers/models/align/processing_align.py
View file @
386ef34e
...
@@ -57,8 +57,7 @@ class AlignProcessor(ProcessorMixin):
...
@@ -57,8 +57,7 @@ class AlignProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
Activates and controls padding for tokenization of input text. Choose between [`True` or `'longest'`,
Activates and controls padding for tokenization of input text. Choose between [`True` or `'longest'`,
`'max_length'`, `False` or `'do_not_pad'`]
`'max_length'`, `False` or `'do_not_pad'`]
...
...
src/transformers/models/altclip/processing_altclip.py
View file @
386ef34e
...
@@ -73,8 +73,7 @@ class AltCLIPProcessor(ProcessorMixin):
...
@@ -73,8 +73,7 @@ class AltCLIPProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
If set, will return tensors of a particular framework. Acceptable values are:
...
...
src/transformers/models/chinese_clip/processing_chinese_clip.py
View file @
386ef34e
...
@@ -75,8 +75,7 @@ class ChineseCLIPProcessor(ProcessorMixin):
...
@@ -75,8 +75,7 @@ class ChineseCLIPProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
If set, will return tensors of a particular framework. Acceptable values are:
...
...
src/transformers/models/clip/processing_clip.py
View file @
386ef34e
...
@@ -73,8 +73,7 @@ class CLIPProcessor(ProcessorMixin):
...
@@ -73,8 +73,7 @@ class CLIPProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
If set, will return tensors of a particular framework. Acceptable values are:
...
...
src/transformers/models/clipseg/processing_clipseg.py
View file @
386ef34e
...
@@ -73,8 +73,7 @@ class CLIPSegProcessor(ProcessorMixin):
...
@@ -73,8 +73,7 @@ class CLIPSegProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
...
...
src/transformers/models/fuyu/processing_fuyu.py
View file @
386ef34e
...
@@ -482,8 +482,7 @@ class FuyuProcessor(ProcessorMixin):
...
@@ -482,8 +482,7 @@ class FuyuProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `List[PIL.Image.Image]`):
images (`PIL.Image.Image`, `List[PIL.Image.Image]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
Returns:
Returns:
[`FuyuBatchEncoding`]: A [`FuyuBatchEncoding`] with the following fields:
[`FuyuBatchEncoding`]: A [`FuyuBatchEncoding`] with the following fields:
...
...
src/transformers/models/git/processing_git.py
View file @
386ef34e
...
@@ -57,8 +57,7 @@ class GitProcessor(ProcessorMixin):
...
@@ -57,8 +57,7 @@ class GitProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
If set, will return tensors of a particular framework. Acceptable values are:
...
...
src/transformers/models/llava/processing_llava.py
View file @
386ef34e
...
@@ -70,8 +70,7 @@ class LlavaProcessor(ProcessorMixin):
...
@@ -70,8 +70,7 @@ class LlavaProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
index) among:
...
...
src/transformers/models/oneformer/processing_oneformer.py
View file @
386ef34e
...
@@ -91,8 +91,7 @@ class OneFormerProcessor(ProcessorMixin):
...
@@ -91,8 +91,7 @@ class OneFormerProcessor(ProcessorMixin):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
segmentation_maps (`ImageInput`, *optional*):
segmentation_maps (`ImageInput`, *optional*):
The corresponding semantic segmentation maps with the pixel-wise annotations.
The corresponding semantic segmentation maps with the pixel-wise annotations.
...
...
src/transformers/models/owlv2/processing_owlv2.py
View file @
386ef34e
...
@@ -62,8 +62,7 @@ class Owlv2Processor(ProcessorMixin):
...
@@ -62,8 +62,7 @@ class Owlv2Processor(ProcessorMixin):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The query image to be prepared, one query image is expected per target image to be queried. Each image
The query image to be prepared, one query image is expected per target image to be queried. Each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
...
...
src/transformers/models/owlvit/processing_owlvit.py
View file @
386ef34e
...
@@ -77,8 +77,7 @@ class OwlViTProcessor(ProcessorMixin):
...
@@ -77,8 +77,7 @@ class OwlViTProcessor(ProcessorMixin):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The query image to be prepared, one query image is expected per target image to be queried. Each image
The query image to be prepared, one query image is expected per target image to be queried. Each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
...
...
src/transformers/models/siglip/processing_siglip.py
View file @
386ef34e
...
@@ -69,8 +69,7 @@ class SiglipProcessor(ProcessorMixin):
...
@@ -69,8 +69,7 @@ class SiglipProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
index) among:
...
...
src/transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py
View file @
386ef34e
...
@@ -76,8 +76,7 @@ class VisionTextDualEncoderProcessor(ProcessorMixin):
...
@@ -76,8 +76,7 @@ class VisionTextDualEncoderProcessor(ProcessorMixin):
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
tensor. Both channels-first and channels-last formats are supported.
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
If set, will return tensors of a particular framework. Acceptable values are:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment