Unverified Commit 372f5003 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Split common test from core tests (#24284)

parent a611ac9b
......@@ -16,80 +16,11 @@
import copy
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import is_torch_available
from transformers import AutoConfig, BertConfig, GPT2Config, is_torch_available
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
config_common_kwargs = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
from .test_configuration_utils import config_common_kwargs
class ConfigTester(object):
......@@ -220,200 +151,3 @@ class ConfigTester(object):
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-config-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-config")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.push_to_hub("test-config", use_auth_token=self._token)
new_config = BertConfig.from_pretrained(f"{USER}/test-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id="test-config", push_to_hub=True, use_auth_token=self._token)
new_config = BertConfig.from_pretrained(f"{USER}/test-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.push_to_hub("valid_org/test-config-org", use_auth_token=self._token)
new_config = BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
tmp_dir, repo_id="valid_org/test-config-org", push_to_hub=True, use_auth_token=self._token
)
new_config = BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_dynamic_config(self):
CustomConfig.register_for_auto_class()
config = CustomConfig(attribute=42)
config.push_to_hub("test-dynamic-config", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map, {"AutoConfig": "custom_configuration.CustomConfig"})
new_config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config", trust_remote_code=True)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__, "CustomConfig")
self.assertEqual(new_config.attribute, 42)
class ConfigTestUtils(unittest.TestCase):
def test_config_from_string(self):
c = GPT2Config()
# attempt to modify each of int/float/bool/str config records and verify they were updated
n_embd = c.n_embd + 1 # int
resid_pdrop = c.resid_pdrop + 1.0 # float
scale_attn_weights = not c.scale_attn_weights # bool
summary_type = c.summary_type + "foo" # str
c.update_from_string(
f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}"
)
self.assertEqual(n_embd, c.n_embd, "mismatch for key: n_embd")
self.assertEqual(resid_pdrop, c.resid_pdrop, "mismatch for key: resid_pdrop")
self.assertEqual(scale_attn_weights, c.scale_attn_weights, "mismatch for key: scale_attn_weights")
self.assertEqual(summary_type, c.summary_type, "mismatch for key: summary_type")
def test_config_common_kwargs_is_complete(self):
base_config = PretrainedConfig()
missing_keys = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
missing_keys, ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]
)
keys_with_defaults = [key for key, value in config_common_kwargs.items() if value == getattr(base_config, key)]
if len(keys_with_defaults) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
f" {', '.join(keys_with_defaults)}."
)
def test_from_pretrained_subfolder(self):
with self.assertRaises(OSError):
# config is in subfolder, the following should not work without specifying the subfolder
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder")
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder", subfolder="bert")
self.assertIsNotNone(config)
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = BertConfig.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json"
)
class ConfigurationVersioningTest(unittest.TestCase):
def test_local_versioning(self):
configuration = AutoConfig.from_pretrained("bert-base-cased")
configuration.configuration_files = ["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(tmp_dir)
configuration.hidden_size = 2
json.dump(configuration.to_dict(), open(os.path.join(tmp_dir, "config.4.0.0.json"), "w"))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
new_configuration = AutoConfig.from_pretrained(tmp_dir)
self.assertEqual(new_configuration.hidden_size, 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
configuration.configuration_files = ["config.42.0.0.json"]
configuration.hidden_size = 768
configuration.save_pretrained(tmp_dir)
shutil.move(os.path.join(tmp_dir, "config.4.0.0.json"), os.path.join(tmp_dir, "config.42.0.0.json"))
new_configuration = AutoConfig.from_pretrained(tmp_dir)
self.assertEqual(new_configuration.hidden_size, 768)
def test_repo_versioning_before(self):
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
repo = "hf-internal-testing/test-two-configs"
import transformers as new_transformers
new_transformers.configuration_utils.__version__ = "v4.0.0"
new_configuration, kwargs = new_transformers.models.auto.AutoConfig.from_pretrained(
repo, return_unused_kwargs=True
)
self.assertEqual(new_configuration.hidden_size, 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(kwargs, {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
old_transformers.configuration_utils.__version__ = "v3.0.0"
old_configuration = old_transformers.models.auto.AutoConfig.from_pretrained(repo)
self.assertEqual(old_configuration.hidden_size, 768)
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPT2Config
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
config_common_kwargs = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-config-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-config")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.push_to_hub("test-config", use_auth_token=self._token)
new_config = BertConfig.from_pretrained(f"{USER}/test-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id="test-config", push_to_hub=True, use_auth_token=self._token)
new_config = BertConfig.from_pretrained(f"{USER}/test-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.push_to_hub("valid_org/test-config-org", use_auth_token=self._token)
new_config = BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
tmp_dir, repo_id="valid_org/test-config-org", push_to_hub=True, use_auth_token=self._token
)
new_config = BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_dynamic_config(self):
CustomConfig.register_for_auto_class()
config = CustomConfig(attribute=42)
config.push_to_hub("test-dynamic-config", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map, {"AutoConfig": "custom_configuration.CustomConfig"})
new_config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config", trust_remote_code=True)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__, "CustomConfig")
self.assertEqual(new_config.attribute, 42)
class ConfigTestUtils(unittest.TestCase):
def test_config_from_string(self):
c = GPT2Config()
# attempt to modify each of int/float/bool/str config records and verify they were updated
n_embd = c.n_embd + 1 # int
resid_pdrop = c.resid_pdrop + 1.0 # float
scale_attn_weights = not c.scale_attn_weights # bool
summary_type = c.summary_type + "foo" # str
c.update_from_string(
f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}"
)
self.assertEqual(n_embd, c.n_embd, "mismatch for key: n_embd")
self.assertEqual(resid_pdrop, c.resid_pdrop, "mismatch for key: resid_pdrop")
self.assertEqual(scale_attn_weights, c.scale_attn_weights, "mismatch for key: scale_attn_weights")
self.assertEqual(summary_type, c.summary_type, "mismatch for key: summary_type")
def test_config_common_kwargs_is_complete(self):
base_config = PretrainedConfig()
missing_keys = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
missing_keys, ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]
)
keys_with_defaults = [key for key, value in config_common_kwargs.items() if value == getattr(base_config, key)]
if len(keys_with_defaults) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
f" {', '.join(keys_with_defaults)}."
)
def test_from_pretrained_subfolder(self):
with self.assertRaises(OSError):
# config is in subfolder, the following should not work without specifying the subfolder
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder")
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder", subfolder="bert")
self.assertIsNotNone(config)
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = BertConfig.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json"
)
def test_local_versioning(self):
configuration = AutoConfig.from_pretrained("bert-base-cased")
configuration.configuration_files = ["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(tmp_dir)
configuration.hidden_size = 2
json.dump(configuration.to_dict(), open(os.path.join(tmp_dir, "config.4.0.0.json"), "w"))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
new_configuration = AutoConfig.from_pretrained(tmp_dir)
self.assertEqual(new_configuration.hidden_size, 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
configuration.configuration_files = ["config.42.0.0.json"]
configuration.hidden_size = 768
configuration.save_pretrained(tmp_dir)
shutil.move(os.path.join(tmp_dir, "config.4.0.0.json"), os.path.join(tmp_dir, "config.42.0.0.json"))
new_configuration = AutoConfig.from_pretrained(tmp_dir)
self.assertEqual(new_configuration.hidden_size, 768)
def test_repo_versioning_before(self):
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
repo = "hf-internal-testing/test-two-configs"
import transformers as new_transformers
new_transformers.configuration_utils.__version__ = "v4.0.0"
new_configuration, kwargs = new_transformers.models.auto.AutoConfig.from_pretrained(
repo, return_unused_kwargs=True
)
self.assertEqual(new_configuration.hidden_size, 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(kwargs, {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
old_transformers.configuration_utils.__version__ = "v3.0.0"
old_configuration = old_transformers.models.auto.AutoConfig.from_pretrained(repo)
self.assertEqual(old_configuration.hidden_size, 768)
......@@ -16,25 +16,9 @@
import json
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
from transformers.testing_utils import check_json_file_has_correct_format
class FeatureExtractionSavingTestMixin:
......@@ -69,112 +53,3 @@ class FeatureExtractionSavingTestMixin:
def test_init_without_params(self):
feat_extract = self.feature_extraction_class()
self.assertIsNotNone(feat_extract)
class FeatureExtractorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = Wav2Vec2FeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
)
@is_staging_test
class FeatureExtractorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-feature-extractor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
except HTTPError:
pass
def test_push_to_hub(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_in_organization(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_dynamic_feature_extractor(self):
CustomFeatureExtractor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
)
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
class FeatureExtractorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = Wav2Vec2FeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
)
@is_staging_test
class FeatureExtractorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-feature-extractor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
except HTTPError:
pass
def test_push_to_hub(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_in_organization(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_dynamic_feature_extractor(self):
CustomFeatureExtractor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
)
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")
......@@ -13,34 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import (
TOKEN,
USER,
check_json_file_has_correct_format,
get_tests_dir,
is_staging_test,
require_torch,
require_vision,
)
from transformers.utils import is_torch_available, is_vision_available
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
......@@ -51,9 +29,6 @@ if is_vision_available():
from PIL import Image
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures")
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
......@@ -201,123 +176,3 @@ class ImageProcessingSavingTestMixin:
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
class ImageProcessorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = ViTImageProcessor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json"
)
@is_staging_test
class ImageProcessorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-image-processor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor")
except HTTPError:
pass
def test_push_to_hub(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_in_organization(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_dynamic_image_processor(self):
CustomImageProcessor.register_for_auto_class()
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map,
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"},
)
new_image_processor = AutoImageProcessor.from_pretrained(
f"{USER}/test-dynamic-image-processor", trust_remote_code=True
)
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
def test_image_processor_from_pretrained_subfolder(self):
with self.assertRaises(OSError):
# config is in subfolder, the following should not work without specifying the subfolder
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants")
config = AutoImageProcessor.from_pretrained(
"hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor"
)
self.assertIsNotNone(config)
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoImageProcessor, ViTImageProcessor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures")
class ImageProcessorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = ViTImageProcessor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json"
)
@is_staging_test
class ImageProcessorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-image-processor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor")
except HTTPError:
pass
def test_push_to_hub(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_in_organization(self):
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-image-processor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token
)
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org")
for k, v in image_processor.__dict__.items():
self.assertEqual(v, getattr(new_image_processor, k))
def test_push_to_hub_dynamic_image_processor(self):
CustomImageProcessor.register_for_auto_class()
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
image_processor.auto_map,
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"},
)
new_image_processor = AutoImageProcessor.from_pretrained(
f"{USER}/test-dynamic-image-processor", trust_remote_code=True
)
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
def test_image_processor_from_pretrained_subfolder(self):
with self.assertRaises(OSError):
# config is in subfolder, the following should not work without specifying the subfolder
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants")
config = AutoImageProcessor.from_pretrained(
"hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor"
)
self.assertIsNotNone(config)
This diff is collapsed.
......@@ -17,25 +17,14 @@ import inspect
import json
import random
import tempfile
import unittest
from typing import List, Tuple
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import BertConfig, is_flax_available, is_torch_available
from transformers import is_flax_available, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import (
TOKEN,
USER,
CaptureLogger,
is_pt_flax_cross_test,
is_staging_test,
require_flax,
torch_device,
)
from transformers.testing_utils import CaptureLogger, is_pt_flax_cross_test, require_flax, torch_device
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging
from transformers.utils.generic import ModelOutput
......@@ -69,14 +58,6 @@ if is_torch_available():
import torch
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key:
setattr(configs_no_init, key, 1e-10)
return configs_no_init
def ids_tensor(shape, vocab_size, rng=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
......@@ -1164,155 +1145,3 @@ class FlaxModelTesterMixin:
# ensure that the outputs remain precisely equal
for output, remat_output in zip(outputs, remat_outputs):
self.assertTrue((output == remat_output).all())
@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-model-flax")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = FlaxBertModel(config)
model.push_to_hub("test-model-flax", use_auth_token=self._token)
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# Reset repo
delete_repo(token=self._token, repo_id="test-model-flax")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, use_auth_token=self._token)
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = FlaxBertModel(config)
model.push_to_hub("valid_org/test-model-flax-org", use_auth_token=self._token)
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, use_auth_token=self._token
)
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def check_models_equal(model1, model2):
models_are_equal = True
flat_params_1 = flatten_dict(model1.params)
flat_params_2 = flatten_dict(model2.params)
for key in flat_params_1.keys():
if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4:
models_are_equal = False
return models_are_equal
@require_flax
class FlaxModelUtilsTest(unittest.TestCase):
def test_model_from_pretrained_subfolder(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
model = FlaxBertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder))
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(tmp_dir)
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_subfolder_sharded(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
model = FlaxBertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(tmp_dir)
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_hub_subfolder(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-subfolder"
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(model_id)
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_hub_subfolder_sharded(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(model_id)
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class FlaxModelPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-model-flax")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = FlaxBertModel(config)
model.push_to_hub("test-model-flax", use_auth_token=self._token)
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# Reset repo
delete_repo(token=self._token, repo_id="test-model-flax")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, use_auth_token=self._token)
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = FlaxBertModel(config)
model.push_to_hub("valid_org/test-model-flax-org", use_auth_token=self._token)
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, use_auth_token=self._token
)
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
base_params = flatten_dict(unfreeze(model.params))
new_params = flatten_dict(unfreeze(new_model.params))
for key in base_params.keys():
max_diff = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def check_models_equal(model1, model2):
models_are_equal = True
flat_params_1 = flatten_dict(model1.params)
flat_params_2 = flatten_dict(model2.params)
for key in flat_params_1.keys():
if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4:
models_are_equal = False
return models_are_equal
@require_flax
class FlaxModelUtilsTest(unittest.TestCase):
def test_model_from_pretrained_subfolder(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
model = FlaxBertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder))
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(tmp_dir)
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_subfolder_sharded(self):
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
model = FlaxBertModel(config)
subfolder = "bert"
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(tmp_dir)
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)
self.assertTrue(check_models_equal(model, model_loaded))
def test_model_from_pretrained_hub_subfolder(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-subfolder"
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(model_id)
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
def test_model_from_pretrained_hub_subfolder_sharded(self):
subfolder = "bert"
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
with self.assertRaises(OSError):
_ = FlaxBertModel.from_pretrained(model_id)
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)
self.assertIsNotNone(model)
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment