Unverified Commit 36b9a994 authored by Alara Dirik's avatar Alara Dirik Committed by GitHub
Browse files

Fix BeitFeatureExtractor postprocessing (#19119)

* return post-processed segmentations as list, add test
* use torch to resize logits
* fix assertion error if no target_size is specified
parent 36e356ca
...@@ -226,43 +226,43 @@ class BeitFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin): ...@@ -226,43 +226,43 @@ class BeitFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
return encoded_inputs return encoded_inputs
def post_process_semantic_segmentation(self, outputs, target_sizes: Union[TensorType, List[Tuple]] = None): def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
""" """
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args: Args:
outputs ([`BeitForSemanticSegmentation`]): outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model. Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*): target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction. If left to List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized. None, predictions will not be resized.
Returns: Returns:
semantic_segmentation: `torch.Tensor` of shape `(batch_size, 2)` or `List[torch.Tensor]` of length semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
`batch_size`, where each item is a semantic segmentation map of of the corresponding target_sizes entry (if segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
`target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
""" """
logits = outputs.logits logits = outputs.logits
if len(logits) != len(target_sizes): # Resize logits and compute semantic segmentation maps
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes is not None and target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
semantic_segmentation = logits.argmax(dim=1)
# Resize semantic segmentation maps
if target_sizes is not None: if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes): if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy() target_sizes = target_sizes.numpy()
resized_maps = [] semantic_segmentation = []
semantic_segmentation = semantic_segmentation.numpy()
for idx in range(len(semantic_segmentation)): for idx in range(len(logits)):
resized = self.resize(image=semantic_segmentation[idx], size=target_sizes[idx]) resized_logits = torch.nn.functional.interpolate(
resized_maps.append(resized) logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_segmentation = [torch.Tensor(np.array(image)) for image in resized_maps] semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation return semantic_segmentation
...@@ -455,3 +455,28 @@ class BeitModelIntegrationTest(unittest.TestCase): ...@@ -455,3 +455,28 @@ class BeitModelIntegrationTest(unittest.TestCase):
) )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4)) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
@slow
def test_post_processing_semantic_segmentation(self):
model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
model = model.to(torch_device)
feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
image = Image.open(ds[0]["file"])
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
expected_shape = torch.Size((500, 300))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((160, 160))
self.assertEqual(segmentation[0].shape, expected_shape)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment