Unverified Commit 3663fca4 authored by Dahlbomii's avatar Dahlbomii Committed by GitHub
Browse files

Type hints added for TFMobileBert (#16505)



* Type hints added

* make style

* Return type hints added

* fixed typo
Co-authored-by: default avatarmatt <rocketknight1@gmail.com>
parent a2392415
...@@ -17,8 +17,9 @@ ...@@ -17,8 +17,9 @@
import warnings import warnings
from dataclasses import dataclass from dataclasses import dataclass
from typing import Dict, Optional, Tuple from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf import tensorflow as tf
from ...activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
...@@ -34,6 +35,7 @@ from ...modeling_tf_outputs import ( ...@@ -34,6 +35,7 @@ from ...modeling_tf_outputs import (
) )
from ...modeling_tf_utils import ( from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss, TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss, TFMultipleChoiceLoss,
TFNextSentencePredictionLoss, TFNextSentencePredictionLoss,
TFPreTrainedModel, TFPreTrainedModel,
...@@ -934,17 +936,17 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel): ...@@ -934,17 +936,17 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFBaseModelOutputWithPooling]:
outputs = self.mobilebert( outputs = self.mobilebert(
input_ids=input_ids, input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
...@@ -998,17 +1000,17 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel): ...@@ -998,17 +1000,17 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
@replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]:
r""" r"""
Return: Return:
...@@ -1097,18 +1099,18 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel ...@@ -1097,18 +1099,18 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFMaskedLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
...@@ -1180,18 +1182,18 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS ...@@ -1180,18 +1182,18 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
next_sentence_label=None, next_sentence_label: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFNextSentencePredictorOutput]:
r""" r"""
Return: Return:
...@@ -1292,18 +1294,18 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque ...@@ -1292,18 +1294,18 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFSequenceClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...@@ -1388,19 +1390,19 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn ...@@ -1388,19 +1390,19 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
start_positions=None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions=None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFQuestionAnsweringModelOutput]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss. Labels for position (index) of the start of the labelled span for computing the token classification loss.
...@@ -1505,18 +1507,18 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic ...@@ -1505,18 +1507,18 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFMultipleChoiceModelOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
...@@ -1634,18 +1636,18 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla ...@@ -1634,18 +1636,18 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
) )
def call( def call(
self, self,
input_ids=None, input_ids: Optional[TFModelInputType] = None,
attention_mask=None, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
token_type_ids=None, token_type_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids=None, position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask=None, head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds=None, inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
labels=None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training=False, training: Optional[bool] = False,
): ) -> Union[Tuple, TFTokenClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment