Unverified Commit 35e6baab authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into attention

parents 5e1207b8 f9cde97b
......@@ -315,8 +315,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......
......@@ -4,11 +4,11 @@ from tqdm import tqdm, trange
from tempfile import TemporaryDirectory
import shelve
from random import random, randrange, randint, shuffle, choice, sample
from random import random, randrange, randint, shuffle, choice
from pytorch_pretrained_bert.tokenization import BertTokenizer
import numpy as np
import json
import collections
class DocumentDatabase:
def __init__(self, reduce_memory=False):
......@@ -98,42 +98,77 @@ def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
else:
trunc_tokens.pop()
MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
["index", "label"])
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list):
"""Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
with several refactors to clean it up and remove a lot of unnecessary variables."""
cand_indices = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indices.append(i)
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
if (whole_word_mask and len(cand_indices) >= 1 and token.startswith("##")):
cand_indices[-1].append(i)
else:
cand_indices.append([i])
num_to_mask = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
shuffle(cand_indices)
mask_indices = sorted(sample(cand_indices, num_to_mask))
masked_token_labels = []
for index in mask_indices:
# 80% of the time, replace with [MASK]
if random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
masked_lms = []
covered_indexes = set()
for index_set in cand_indices:
if len(masked_lms) >= num_to_mask:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_mask:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if random() < 0.8:
masked_token = "[MASK]"
else:
masked_token = choice(vocab_list)
masked_token_labels.append(tokens[index])
# Once we've saved the true label for that token, we can overwrite it with the masked version
tokens[index] = masked_token
# 10% of the time, keep original
if random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = choice(vocab_list)
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
tokens[index] = masked_token
assert len(masked_lms) <= num_to_mask
masked_lms = sorted(masked_lms, key=lambda x: x.index)
mask_indices = [p.index for p in masked_lms]
masked_token_labels = [p.label for p in masked_lms]
return tokens, mask_indices, masked_token_labels
def create_instances_from_document(
doc_database, doc_idx, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_list):
masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list):
"""This code is mostly a duplicate of the equivalent function from Google BERT's repo.
However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.
Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence
......@@ -213,7 +248,7 @@ def create_instances_from_document(
segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]
tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_list)
tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list)
instance = {
"tokens": tokens,
......@@ -237,7 +272,8 @@ def main():
choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
"bert-base-multilingual", "bert-base-chinese"])
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--do_whole_word_mask", action="store_true",
help="Whether to use whole word masking rather than per-WordPiece masking.")
parser.add_argument("--reduce_memory", action="store_true",
help="Reduce memory usage for large datasets by keeping data on disc rather than in memory")
......@@ -284,7 +320,7 @@ def main():
doc_instances = create_instances_from_document(
docs, doc_idx, max_seq_length=args.max_seq_len, short_seq_prob=args.short_seq_prob,
masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq,
vocab_list=vocab_list)
whole_word_mask=args.do_whole_word_mask, vocab_list=vocab_list)
doc_instances = [json.dumps(instance) for instance in doc_instances]
for instance in doc_instances:
epoch_file.write(instance + '\n')
......
......@@ -534,36 +534,37 @@ def main():
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
......@@ -603,8 +604,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......
......@@ -271,7 +271,7 @@ class StsbProcessor(DataProcessor):
class QqpProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
"""Processor for the QQP data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
......@@ -306,7 +306,7 @@ class QqpProcessor(DataProcessor):
class QnliProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
"""Processor for the QNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
......@@ -763,35 +763,36 @@ def main():
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
nb_tr_steps = 0
......@@ -854,8 +855,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......@@ -939,7 +939,7 @@ def main():
elif output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(task_name, preds, all_label_ids.numpy())
loss = tr_loss/nb_tr_steps if args.do_train else None
loss = tr_loss/global_step if args.do_train else None
result['eval_loss'] = eval_loss
result['global_step'] = global_step
......@@ -1007,7 +1007,7 @@ def main():
preds = preds[0]
preds = np.argmax(preds, axis=1)
result = compute_metrics(task_name, preds, all_label_ids.numpy())
loss = tr_loss/nb_tr_steps if args.do_train else None
loss = tr_loss/global_step if args.do_train else None
result['eval_loss'] = eval_loss
result['global_step'] = global_step
......
......@@ -83,8 +83,8 @@ def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, d
input_ids[i, 1, :len(with_cont2)] = with_cont2
mc_token_ids[i, 0] = len(with_cont1) - 1
mc_token_ids[i, 1] = len(with_cont2) - 1
lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
lm_labels[i, 0, :len(with_cont1)] = with_cont1
lm_labels[i, 1, :len(with_cont2)] = with_cont2
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
......@@ -183,19 +183,20 @@ def main():
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
......
......@@ -922,40 +922,41 @@ def main():
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
if args.do_train:
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
......@@ -1015,8 +1016,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used and handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......
......@@ -385,39 +385,40 @@ def main():
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
if args.do_train:
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
......@@ -466,8 +467,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step/num_train_optimization_steps,
args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......@@ -540,7 +540,7 @@ def main():
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
'loss': tr_loss/global_step}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
......
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (
BertModel,
BertForNextSentencePrediction,
BertForMaskedLM,
BertForMultipleChoice,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
)
dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex']
# A lot of models share the same param doc. Use a decorator
# to save typing
bert_docstring = """
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-large-cased`
. `bert-base-multilingual-uncased`
. `bert-base-multilingual-cased`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining
instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow
checkpoint
cache_dir: an optional path to a folder in which the pre-trained models
will be cached.
state_dict: an optional state dictionnary
(collections.OrderedDict object) to use instead of Google
pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
def _append_from_pretrained_docstring(docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + docstr
return fn
return docstring_decorator
def bertTokenizer(*args, **kwargs):
"""
Instantiate a BertTokenizer from a pre-trained/customized vocab file
Args:
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
* bert-base-uncased
* bert-large-uncased
* bert-base-cased
* bert-large-cased
* bert-base-multilingual-uncased
* bert-base-multilingual-cased
* bert-base-chinese
Keyword args:
cache_dir: an optional path to a specific directory to download and cache
the pre-trained model weights.
Default: None
do_lower_case: Whether to lower case the input.
Only has an effect when do_wordpiece_only=False
Default: True
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
Default: True
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
sequence length.
Default: None
never_split: List of tokens which will never be split during tokenization.
Only has an effect when do_wordpiece_only=False
Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
Example:
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('ailzhang/pytorch-pretrained-BERT:hubconf', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
[8667, 28136, 1291, 28125]
"""
tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
@_append_from_pretrained_docstring(bert_docstring)
def bertModel(*args, **kwargs):
"""
BertModel is the basic BERT Transformer model with a layer of summed token,
position and sequence embeddings followed by a series of identical
self-attention blocks (12 for BERT-base, 24 for BERT-large).
"""
model = BertModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForNextSentencePrediction(*args, **kwargs):
"""
BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence
classification head.
"""
model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForPreTraining(*args, **kwargs):
"""
BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads
- the masked language modeling head, and
- the next sentence classification head.
"""
model = BertForPreTraining.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMaskedLM(*args, **kwargs):
"""
BertForMaskedLM includes the BertModel Transformer followed by the
(possibly) pre-trained masked language modeling head.
"""
model = BertForMaskedLM.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForSequenceClassification(*args, **kwargs):
"""
BertForSequenceClassification is a fine-tuning model that includes
BertModel and a sequence-level (sequence or pair of sequences) classifier
on top of the BertModel.
The sequence-level classifier is a linear layer that takes as input the
last hidden state of the first character in the input sequence
(see Figures 3a and 3b in the BERT paper).
"""
model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMultipleChoice(*args, **kwargs):
"""
BertForMultipleChoice is a fine-tuning model that includes BertModel and a
linear layer on top of the BertModel.
"""
model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForQuestionAnswering(*args, **kwargs):
"""
BertForQuestionAnswering is a fine-tuning model that includes BertModel
with a token-level classifiers on top of the full sequence of last hidden
states.
"""
model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForTokenClassification(*args, **kwargs):
"""
BertForTokenClassification is a fine-tuning model that includes BertModel
and a token-level classifier on top of the BertModel.
The token-level classifier is a linear layer that takes as input the last
hidden state of the sequence.
"""
model = BertForTokenClassification.from_pretrained(*args, **kwargs)
return model
from hubconfs.bert_hubconf import (
bertTokenizer,
bertModel,
bertForNextSentencePrediction,
bertForPreTraining,
bertForMaskedLM,
bertForSequenceClassification,
bertForMultipleChoice,
bertForQuestionAnswering,
bertForTokenClassification
)
from hubconfs.gpt_hubconf import (
openAIGPTTokenizer,
openAIGPTModel,
openAIGPTLMHeadModel,
openAIGPTDoubleHeadsModel
)
\ No newline at end of file
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (
BertModel,
BertForNextSentencePrediction,
BertForMaskedLM,
BertForMultipleChoice,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
)
# A lot of models share the same param doc. Use a decorator
# to save typing
bert_docstring = """
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-large-cased`
. `bert-base-multilingual-uncased`
. `bert-base-multilingual-cased`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining
instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow
checkpoint
cache_dir: an optional path to a folder in which the pre-trained models
will be cached.
state_dict: an optional state dictionnary
(collections.OrderedDict object) to use instead of Google
pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
def _append_from_pretrained_docstring(docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + docstr
return fn
return docstring_decorator
def bertTokenizer(*args, **kwargs):
"""
Instantiate a BertTokenizer from a pre-trained/customized vocab file
Args:
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
* bert-base-uncased
* bert-large-uncased
* bert-base-cased
* bert-large-cased
* bert-base-multilingual-uncased
* bert-base-multilingual-cased
* bert-base-chinese
Keyword args:
cache_dir: an optional path to a specific directory to download and cache
the pre-trained model weights.
Default: None
do_lower_case: Whether to lower case the input.
Only has an effect when do_wordpiece_only=False
Default: True
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
Default: True
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
sequence length.
Default: None
never_split: List of tokens which will never be split during tokenization.
Only has an effect when do_wordpiece_only=False
Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
Example:
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
[8667, 28136, 1291, 28125]
"""
tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
@_append_from_pretrained_docstring(bert_docstring)
def bertModel(*args, **kwargs):
"""
BertModel is the basic BERT Transformer model with a layer of summed token,
position and sequence embeddings followed by a series of identical
self-attention blocks (12 for BERT-base, 24 for BERT-large).
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertModel', 'bert-base-cased')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
encoded_layers, _ = model(tokens_tensor, segments_tensors)
"""
model = BertModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForNextSentencePrediction(*args, **kwargs):
"""
BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence
classification head.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForNextSentencePrediction
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForNextSentencePrediction', 'bert-base-cased')
>>> model.eval()
# Predict the next sentence classification logits
>>> with torch.no_grad():
next_sent_classif_logits = model(tokens_tensor, segments_tensors)
"""
model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForPreTraining(*args, **kwargs):
"""
BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads
- the masked language modeling head, and
- the next sentence classification head.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForPreTraining
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForPreTraining', 'bert-base-cased')
>>> masked_lm_logits_scores, seq_relationship_logits = model(tokens_tensor, segments_tensors)
"""
model = BertForPreTraining.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMaskedLM(*args, **kwargs):
"""
BertForMaskedLM includes the BertModel Transformer followed by the
(possibly) pre-trained masked language modeling head.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> masked_index = 8
>>> tokenized_text[masked_index] = '[MASK]'
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForMaskedLM
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMaskedLM', 'bert-base-cased')
>>> model.eval()
# Predict all tokens
>>> with torch.no_grad():
predictions = model(tokens_tensor, segments_tensors)
>>> predicted_index = torch.argmax(predictions[0, masked_index]).item()
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
'henson'
"""
model = BertForMaskedLM.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForSequenceClassification(*args, **kwargs):
"""
BertForSequenceClassification is a fine-tuning model that includes
BertModel and a sequence-level (sequence or pair of sequences) classifier
on top of the BertModel. Note that the classification head is only initialized
and has to be trained.
The sequence-level classifier is a linear layer that takes as input the
last hidden state of the first character in the input sequence
(see Figures 3a and 3b in the BERT paper).
Args:
num_labels: the number (>=2) of classes for the classifier.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForSequenceClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the sequence classification logits
>>> with torch.no_grad():
seq_classif_logits = model(tokens_tensor, segments_tensors)
# Or get the sequence classification loss
>>> labels = torch.tensor([1])
>>> seq_classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
"""
model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMultipleChoice(*args, **kwargs):
"""
BertForMultipleChoice is a fine-tuning model that includes BertModel and a
linear layer on top of the BertModel. Note that the multiple choice head is
only initialized and has to be trained.
Args:
num_choices: the number (>=2) of classes for the classifier.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens, indexed_tokens]).unsqueeze(0)
>>> segments_tensors = torch.tensor([segments_ids, segments_ids]).unsqueeze(0)
# Load bertForMultipleChoice
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>> model.eval()
# Predict the multiple choice logits
>>> with torch.no_grad():
multiple_choice_logits = model(tokens_tensor, segments_tensors)
# Or get the multiple choice loss
>>> labels = torch.tensor([1])
>>> multiple_choice_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
"""
model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForQuestionAnswering(*args, **kwargs):
"""
BertForQuestionAnswering is a fine-tuning model that includes BertModel
with a token-level classifiers on top of the full sequence of last hidden
states. Note that the classification head is only initialized
and has to be trained.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForQuestionAnswering
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForQuestionAnswering', 'bert-base-cased')
>>> model.eval()
# Predict the start and end positions logits
>>> with torch.no_grad():
start_logits, end_logits = model(tokens_tensor, segments_tensors)
# Or get the total loss which is the sum of the CrossEntropy loss for the start and end token positions
>>> start_positions, end_positions = torch.tensor([12]), torch.tensor([14])
# set model.train() before if training this loss
>>> multiple_choice_loss = model(tokens_tensor, segments_tensors, start_positions=start_positions, end_positions=end_positions)
"""
model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForTokenClassification(*args, **kwargs):
"""
BertForTokenClassification is a fine-tuning model that includes BertModel
and a token-level classifier on top of the BertModel. Note that the classification
head is only initialized and has to be trained.
The token-level classifier is a linear layer that takes as input the last
hidden state of the sequence.
Args:
num_labels: the number (>=2) of classes for the classifier.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForTokenClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the token classification logits
>>> with torch.no_grad():
classif_logits = model(tokens_tensor, segments_tensors)
# Or get the token classification loss
>>> labels = torch.tensor([[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0]])
>>> classif_loss = model(tokens_tensor, segments_tensors, labels=labels) # set model.train() before if training this loss
"""
model = BertForTokenClassification.from_pretrained(*args, **kwargs)
return model
from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer
from pytorch_pretrained_bert.modeling_openai import (
OpenAIGPTModel,
OpenAIGPTLMHeadModel,
OpenAIGPTDoubleHeadsModel
)
# Dependecies that are not specified in global hubconf.py
specific_dependencies = ['spacy', 'ftfy']
# A lot of models share the same param doc. Use a decorator
# to save typing
gpt_docstring = """
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt`
- a path or url to a pretrained model archive containing:
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `openai-gpt-config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object)
to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific OpenAI-GPT class
"""
def _append_from_pretrained_docstring(docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + docstr
return fn
return docstring_decorator
def openAIGPTTokenizer(*args, **kwargs):
"""
Instantiate a BPE tokenizer for OpenAI GPT from a pre-trained/customized vocab file.
Peculiarities:
- lower case all inputs
- uses SpaCy tokenizer ('en' model) and ftfy for pre-BPE tokenization if they are installed, fallback to BERT's BasicTokenizer if not.
- argument special_tokens and function set_special_tokens:
can be used to add additional symbols (ex: "__classify__") to a vocabulary.
Args:
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
* openai-gpt
Keyword args:
special_tokens: Special tokens in vocabulary that are not pretrained ([SEP], [CLS]...)
Default: None
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
sequence length.
Default: None
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
[763, 509, 4265, 2298, 945, 257, 4265, 2298, 945, 509, 246, 10148, 39041, 483]
"""
tokenizer = OpenAIGPTTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
@_append_from_pretrained_docstring(gpt_docstring)
def openAIGPTModel(*args, **kwargs):
"""
OpenAIGPTModel is the basic OpenAI GPT Transformer model based on
identical stacked masked self-attention blocks and pre-trained
on large scale dataset using language modeling signal.
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
hidden_states = model(tokens_tensor)
"""
model = OpenAIGPTModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(gpt_docstring)
def openAIGPTLMHeadModel(*args, **kwargs):
"""
OpenAIGPTLMHeadModel is the OpenAI GPT Transformer model with the
tied (pre-trained) language modeling head on top.
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTLMHeadModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
predictions = model(tokens_tensor)
# Get the predicted last token
>>> predicted_index = torch.argmax(predictions[0, -1, :]).item()
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
'.</w>'
"""
model = OpenAIGPTLMHeadModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(gpt_docstring)
def openAIGPTDoubleHeadsModel(*args, **kwargs):
"""
OpenAIGPTDoubleHeadsModel is the OpenAI GPT Transformer model with the
tied (pre-trained) language modeling head and a multiple choice
classification head (only initialized, not pre-trained).
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> mc_token_ids = torch.LongTensor([ [len(tokenized_text)] ])
# Load openAIGPTDoubleHeadsModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
lm_logits, multiple_choice_logits = model(tokens_tensor, mc_token_ids)
"""
model = OpenAIGPTDoubleHeadsModel.from_pretrained(*args, **kwargs)
return model
......@@ -22,6 +22,15 @@ import requests
from botocore.exceptions import ClientError
from tqdm import tqdm
try:
from torch.hub import _get_torch_home
torch_cache_home = _get_torch_home()
except ImportError:
torch_cache_home = os.path.expanduser(
os.getenv('TORCH_HOME', os.path.join(
os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')))
default_cache_path = os.path.join(torch_cache_home, 'pytorch_pretrained_bert')
try:
from urllib.parse import urlparse
except ImportError:
......@@ -29,11 +38,11 @@ except ImportError:
try:
from pathlib import Path
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
Path.home() / '.pytorch_pretrained_bert'))
PYTORCH_PRETRAINED_BERT_CACHE = Path(
os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path))
except (AttributeError, ImportError):
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_bert'))
default_cache_path)
CONFIG_NAME = "config.json"
WEIGHTS_NAME = "pytorch_model.bin"
......
......@@ -145,7 +145,8 @@ class BertConfig(object):
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02):
initializer_range=0.02,
layer_norm_eps=1e-12):
"""Constructs BertConfig.
Args:
......@@ -169,6 +170,7 @@ class BertConfig(object):
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
......@@ -188,6 +190,7 @@ class BertConfig(object):
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
......@@ -254,7 +257,7 @@ class BertEmbeddings(nn.Module):
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
......@@ -332,7 +335,7 @@ class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
......@@ -378,7 +381,7 @@ class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
......@@ -454,7 +457,7 @@ class BertPredictionHeadTransform(nn.Module):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
......@@ -1020,7 +1023,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels, output_attentions=False):
def __init__(self, config, num_labels=2, output_attentions=False):
super(BertForSequenceClassification, self).__init__(config)
self.output_attentions = output_attentions
self.num_labels = num_labels
......@@ -1091,7 +1094,7 @@ class BertForMultipleChoice(BertPreTrainedModel):
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_choices, output_attentions=False):
def __init__(self, config, num_choices=2, output_attentions=False):
super(BertForMultipleChoice, self).__init__(config)
self.output_attentions = output_attentions
self.num_choices = num_choices
......@@ -1167,7 +1170,7 @@ class BertForTokenClassification(BertPreTrainedModel):
logits = model(input_ids, token_type_ids, input_mask)
```
"""
def __init__(self, config, num_labels, output_attentions=False):
def __init__(self, config, num_labels=2, output_attentions=False):
super(BertForTokenClassification, self).__init__(config)
self.output_attentions = output_attentions
self.num_labels = num_labels
......
......@@ -434,9 +434,7 @@ class OpenAIGPTPreTrainedModel(nn.Module):
module.bias.data.zero_()
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
def from_pretrained(cls, pretrained_model_name_or_path, num_special_tokens=None, *inputs, **kwargs):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
......@@ -449,14 +447,20 @@ class OpenAIGPTPreTrainedModel(nn.Module):
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `openai-gpt-config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
*inputs, **kwargs: additional input for the specific OpenAI-GPT class
"""
state_dict = kwargs.get('state_dict', None)
kwargs.pop('state_dict', None)
cache_dir = kwargs.get('cache_dir', None)
kwargs.pop('cache_dir', None)
from_tf = kwargs.get('from_tf', False)
kwargs.pop('from_tf', None)
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment