Commit 35401fe5 authored by Aymeric Augustin's avatar Aymeric Augustin Committed by Julien Chaumond
Browse files

Remove dependency on pytest for running tests (#2055)

* Switch to plain unittest for skipping slow tests.

Add a RUN_SLOW environment variable for running them.

* Switch to plain unittest for PyTorch dependency.

* Switch to plain unittest for TensorFlow dependency.

* Avoid leaking open files in the test suite.

This prevents spurious warnings when running tests.

* Fix unicode warning on Python 2 when running tests.

The warning was:

    UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal

* Support running PyTorch tests on a GPU.

Reverts 27e015bd.

* Tests no longer require pytest.

* Make tests pass on cuda
parent e4679cdd
......@@ -25,18 +25,17 @@ import unittest
import uuid
import tempfile
import pytest
import sys
from transformers import is_tf_available, is_torch_available
from .utils import require_tf, slow
if is_tf_available():
import tensorflow as tf
import numpy as np
from transformers import TFPreTrainedModel
# from transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
if sys.version_info[0] == 2:
import cPickle as pickle
......@@ -62,6 +61,7 @@ def _config_zero_init(config):
class TFCommonTestCases:
@require_tf
class TFCommonModelTester(unittest.TestCase):
model_tester = None
......@@ -164,7 +164,7 @@ class TFCommonTestCases:
for model_class in self.all_model_classes:
# Prepare our model
model = model_class(config)
# Let's load it from the disk to be sure we can use pretrained weights
with TemporaryDirectory() as tmpdirname:
outputs = model(inputs_dict) # build the model
......
......@@ -18,11 +18,11 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import CTRLConfig, is_tf_available
......@@ -30,10 +30,9 @@ if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_ctrl import (TFCTRLModel, TFCTRLLMHeadModel,
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else ()
......@@ -188,7 +187,7 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -17,10 +17,10 @@ from __future__ import division
from __future__ import print_function
import unittest
import pytest
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import DistilBertConfig, is_tf_available
......@@ -30,10 +30,9 @@ if is_tf_available():
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering,
......@@ -210,7 +209,7 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
# @pytest.mark.slow
# @slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,11 +18,11 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import GPT2Config, is_tf_available
......@@ -31,10 +31,9 @@ if is_tf_available():
from transformers.modeling_tf_gpt2 import (TFGPT2Model, TFGPT2LMHeadModel,
TFGPT2DoubleHeadsModel,
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel,
......@@ -219,7 +218,7 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,11 +18,11 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import OpenAIGPTConfig, is_tf_available
......@@ -31,10 +31,9 @@ if is_tf_available():
from transformers.modeling_tf_openai import (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel,
TFOpenAIGPTDoubleHeadsModel,
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel,
......@@ -218,7 +217,7 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,10 +18,10 @@ from __future__ import print_function
import unittest
import shutil
import pytest
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import RobertaConfig, is_tf_available
......@@ -32,10 +32,9 @@ if is_tf_available():
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFRobertaModel,TFRobertaForMaskedLM,
......@@ -191,7 +190,7 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -203,10 +202,10 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
class TFRobertaModelIntegrationTest(unittest.TestCase):
@pytest.mark.slow
@slow
def test_inference_masked_lm(self):
model = TFRobertaForMaskedLM.from_pretrained('roberta-base')
input_ids = tf.constant([[ 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = [1, 11, 50265]
......@@ -224,10 +223,10 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-3)
)
@pytest.mark.slow
@slow
def test_inference_no_head(self):
model = TFRobertaModel.from_pretrained('roberta-base')
input_ids = tf.constant([[ 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
# compare the actual values for a slice.
......@@ -240,10 +239,10 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-3)
)
@pytest.mark.slow
@slow
def test_inference_classification_head(self):
model = TFRobertaForSequenceClassification.from_pretrained('roberta-large-mnli')
input_ids = tf.constant([[ 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = [1, 3]
......
......@@ -19,10 +19,10 @@ from __future__ import print_function
import unittest
import random
import shutil
import pytest
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import TransfoXLConfig, is_tf_available
......@@ -31,10 +31,9 @@ if is_tf_available():
from transformers.modeling_tf_transfo_xl import (TFTransfoXLModel,
TFTransfoXLLMHeadModel,
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFTransfoXLModel, TFTransfoXLLMHeadModel) if is_tf_available() else ()
......@@ -204,7 +203,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,7 +18,6 @@ from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_tf_available
......@@ -29,13 +28,13 @@ if is_tf_available():
TFXLMForSequenceClassification,
TFXLMForQuestionAnsweringSimple,
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
@require_tf
class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFXLMModel, TFXLMWithLMHeadModel,
......@@ -251,7 +250,7 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -21,7 +21,6 @@ import unittest
import json
import random
import shutil
import pytest
from transformers import XLNetConfig, is_tf_available
......@@ -33,12 +32,13 @@ if is_tf_available():
TFXLNetForTokenClassification,
TFXLNetForQuestionAnsweringSimple,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
@require_tf
class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes=(TFXLNetModel, TFXLNetLMHeadModel,
......@@ -304,7 +304,7 @@ class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
def test_xlnet_lm_head(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
def test_xlnet_sequence_classif(self):
self.model_tester.set_seed()
......@@ -320,7 +320,7 @@ class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -19,7 +19,6 @@ from __future__ import print_function
import unittest
import random
import shutil
import pytest
from transformers import is_torch_available
......@@ -27,12 +26,13 @@ if is_torch_available():
import torch
from transformers import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class TransfoXLModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
......@@ -111,6 +111,7 @@ class TransfoXLModelTest(CommonTestCases.CommonModelTester):
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.to(torch_device)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1)
......@@ -140,6 +141,7 @@ class TransfoXLModelTest(CommonTestCases.CommonModelTester):
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.to(torch_device)
model.eval()
lm_logits_1, mems_1 = model(input_ids_1)
......@@ -204,7 +206,7 @@ class TransfoXLModelTest(CommonTestCases.CommonModelTester):
output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
self.model_tester.check_transfo_xl_lm_head_output(output_result)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,7 +18,6 @@ from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_torch_available
......@@ -26,13 +25,13 @@ if is_torch_available():
from transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering,
XLMForSequenceClassification, XLMForQuestionAnsweringSimple)
from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class XLMModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering,
......@@ -148,6 +147,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlm_model(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = XLMModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
outputs = model(input_ids, langs=token_type_ids)
......@@ -163,6 +163,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlm_lm_head(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = XLMWithLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
......@@ -182,6 +183,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlm_simple_qa(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = XLMForQuestionAnsweringSimple(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
......@@ -206,6 +208,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlm_qa(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = XLMForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
......@@ -260,6 +263,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlm_sequence_classif(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
model = XLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
(logits,) = model(input_ids)
......@@ -312,7 +316,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -21,7 +21,6 @@ import unittest
import json
import random
import shutil
import pytest
from transformers import is_torch_available
......@@ -31,12 +30,13 @@ if is_torch_available():
from transformers import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification,
XLNetForTokenClassification, XLNetForQuestionAnswering)
from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class XLNetModelTest(CommonTestCases.CommonModelTester):
all_model_classes=(XLNetModel, XLNetLMHeadModel, XLNetForTokenClassification,
......@@ -100,9 +100,9 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = torch.zeros(self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float)
perm_mask = torch.zeros(self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros(self.batch_size, 1, self.seq_length + 1, dtype=torch.float)
target_mapping = torch.zeros(self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device)
target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels = None
......@@ -141,6 +141,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlnet_base_model(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels, token_labels):
model = XLNetModel(config)
model.to(torch_device)
model.eval()
_, _ = model(input_ids_1, input_mask=input_mask)
......@@ -155,6 +156,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
config.mem_len = 0
model = XLNetModel(config)
model.to(torch_device)
model.eval()
no_mems_outputs = model(input_ids_1)
self.parent.assertEqual(len(no_mems_outputs), 1)
......@@ -169,6 +171,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlnet_base_model_with_att_output(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels, token_labels):
model = XLNetModel(config)
model.to(torch_device)
model.eval()
_, _, attentions = model(input_ids_1, target_mapping=target_mapping)
......@@ -181,6 +184,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlnet_lm_head(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels, token_labels):
model = XLNetLMHeadModel(config)
model.to(torch_device)
model.eval()
loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
......@@ -221,6 +225,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlnet_qa(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels, token_labels):
model = XLNetForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids_1)
......@@ -279,6 +284,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlnet_token_classif(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels, token_labels):
model = XLNetForTokenClassification(config)
model.to(torch_device)
model.eval()
logits, mems_1 = model(input_ids_1)
......@@ -311,6 +317,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xlnet_sequence_classif(self, config, input_ids_1, input_ids_2, input_ids_q, perm_mask, input_mask,
target_mapping, segment_ids, lm_labels, sequence_labels, is_impossible_labels, token_labels):
model = XLNetForSequenceClassification(config)
model.to(torch_device)
model.eval()
logits, mems_1 = model(input_ids_1)
......@@ -362,7 +369,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
def test_xlnet_lm_head(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
def test_xlnet_sequence_classif(self):
self.model_tester.set_seed()
......@@ -379,7 +386,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,7 +18,6 @@ from __future__ import print_function
import unittest
import os
import pytest
from transformers import is_torch_available
......@@ -31,10 +30,9 @@ if is_torch_available():
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup)
else:
pytestmark = pytest.mark.skip("Require Torch")
from .tokenization_tests_commons import TemporaryDirectory
from .utils import require_torch
def unwrap_schedule(scheduler, num_steps=10):
......@@ -58,6 +56,7 @@ def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
scheduler.load_state_dict(state_dict)
return lrs
@require_torch
class OptimizationTest(unittest.TestCase):
def assertListAlmostEqual(self, list1, list2, tol):
......@@ -80,6 +79,7 @@ class OptimizationTest(unittest.TestCase):
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)
@require_torch
class ScheduleInitTest(unittest.TestCase):
m = torch.nn.Linear(50, 50) if is_torch_available() else None
optimizer = AdamW(m.parameters(), lr=10.) if is_torch_available() else None
......
......@@ -18,15 +18,16 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import logging
from transformers import AutoTokenizer, BertTokenizer, AutoTokenizer, GPT2Tokenizer
from transformers import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
from .utils import slow
class AutoTokenizerTest(unittest.TestCase):
@pytest.mark.slow
@slow
def test_tokenizer_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys())[:1]:
......
......@@ -16,7 +16,6 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import os
import unittest
import pytest
from io import open
from transformers.tokenization_bert import (BasicTokenizer,
......@@ -26,6 +25,7 @@ from transformers.tokenization_bert import (BasicTokenizer,
_is_whitespace, VOCAB_FILES_NAMES)
from .tokenization_tests_commons import CommonTestCases
from .utils import slow
class BertTokenizationTest(CommonTestCases.CommonTokenizerTester):
......@@ -126,7 +126,7 @@ class BertTokenizationTest(CommonTestCases.CommonTokenizerTester):
self.assertFalse(_is_punctuation(u"A"))
self.assertFalse(_is_punctuation(u" "))
@pytest.mark.slow
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
......
......@@ -16,13 +16,13 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import os
import unittest
import pytest
from io import open
from transformers.tokenization_distilbert import (DistilBertTokenizer)
from .tokenization_tests_commons import CommonTestCases
from .tokenization_bert_test import BertTokenizationTest
from .utils import slow
class DistilBertTokenizationTest(BertTokenizationTest):
......@@ -31,7 +31,7 @@ class DistilBertTokenizationTest(BertTokenizationTest):
def get_tokenizer(self, **kwargs):
return DistilBertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
@pytest.mark.slow
@slow
def test_sequence_builders(self):
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
......
......@@ -17,11 +17,11 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import os
import json
import unittest
import pytest
from io import open
from transformers.tokenization_roberta import RobertaTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import CommonTestCases
from .utils import slow
class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
......@@ -79,7 +79,7 @@ class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]
)
@pytest.mark.slow
@slow
def test_sequence_builders(self):
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
......
......@@ -102,9 +102,11 @@ class CommonTestCases:
with TemporaryDirectory() as tmpdirname:
filename = os.path.join(tmpdirname, u"tokenizer.bin")
pickle.dump(tokenizer, open(filename, "wb"))
with open(filename, "wb") as handle:
pickle.dump(tokenizer, handle)
tokenizer_new = pickle.load(open(filename, "rb"))
with open(filename, "rb") as handle:
tokenizer_new = pickle.load(handle)
subwords_loaded = tokenizer_new.tokenize(text)
......
......@@ -16,7 +16,6 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import os
import unittest
import pytest
from io import open
from transformers import is_torch_available
......@@ -24,11 +23,12 @@ from transformers import is_torch_available
if is_torch_available():
import torch
from transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
else:
pytestmark = pytest.mark.skip("Require Torch") # TODO: untangle Transfo-XL tokenizer from torch.load and torch.save
from .tokenization_tests_commons import CommonTestCases
from .utils import require_torch
@require_torch
class TransfoXLTokenizationTest(CommonTestCases.CommonTokenizerTester):
tokenizer_class = TransfoXLTokenizer if is_torch_available() else None
......
......@@ -18,13 +18,14 @@ from __future__ import print_function
import unittest
import six
import pytest
from transformers import PreTrainedTokenizer
from transformers.tokenization_gpt2 import GPT2Tokenizer
from .utils import slow
class TokenizerUtilsTest(unittest.TestCase):
@pytest.mark.slow
def check_tokenizer_from_pretrained(self, tokenizer_class):
s3_models = list(tokenizer_class.max_model_input_sizes.keys())
for model_name in s3_models[:1]:
......@@ -41,6 +42,7 @@ class TokenizerUtilsTest(unittest.TestCase):
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
self.assertIsInstance(special_tok_id, int)
@slow
def test_pretrained_tokenizers(self):
self.check_tokenizer_from_pretrained(GPT2Tokenizer)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment