Unverified Commit 349e1242 authored by Arthur's avatar Arthur Committed by GitHub
Browse files

[NLLB-MoE] `model_type` update for auto mapping (#22470)

edit default model type and testing path set to hf-internal-testing
parent 11426641
...@@ -125,7 +125,7 @@ class NllbMoeConfig(PretrainedConfig): ...@@ -125,7 +125,7 @@ class NllbMoeConfig(PretrainedConfig):
>>> # Accessing the model configuration >>> # Accessing the model configuration
>>> configuration = model.config >>> configuration = model.config
```""" ```"""
model_type = "nllb_moe" model_type = "nllb-moe"
keys_to_ignore_at_inference = ["past_key_values"] keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
......
...@@ -354,14 +354,14 @@ class NllbMoeModelIntegrationTests(unittest.TestCase): ...@@ -354,14 +354,14 @@ class NllbMoeModelIntegrationTests(unittest.TestCase):
@cached_property @cached_property
def tokenizer(self): def tokenizer(self):
return NllbTokenizer.from_pretrained("ArthurZ/random-nllb-moe-2-experts") return NllbTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
@cached_property @cached_property
def big_model(self): def big_model(self):
return NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b") return NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b")
def inference_no_head(self): def inference_no_head(self):
model = NllbMoeModel.from_pretrained("ArthurZ/random-nllb-moe-2-experts").eval() model = NllbMoeModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts").eval()
with torch.no_grad(): with torch.no_grad():
output = model(**self.model_inputs) output = model(**self.model_inputs)
# fmt: off # fmt: off
...@@ -382,7 +382,7 @@ class NllbMoeModelIntegrationTests(unittest.TestCase): ...@@ -382,7 +382,7 @@ class NllbMoeModelIntegrationTests(unittest.TestCase):
and `transformers` implementation of NLLB-MoE transformers. We only check the logits and `transformers` implementation of NLLB-MoE transformers. We only check the logits
of the second sample of the batch, as it is padded. of the second sample of the batch, as it is padded.
""" """
model = NllbMoeForConditionalGeneration.from_pretrained("ArthurZ/random-nllb-moe-2-experts").eval() model = NllbMoeForConditionalGeneration.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts").eval()
with torch.no_grad(): with torch.no_grad():
output = model(**self.model_inputs) output = model(**self.model_inputs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment