Unverified Commit 3327c2b0 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Update README.md

parent fe326bd5
## RAG ## RAG
This is a "base" version of the RAG-Sequence Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) This is a non-finetuned version of the RAG-Sequence model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al. by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`.
This model is a non-finetuned RAG-Sequence model and was created as follows:
```python
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration, AutoTokenizer
model = RagSequenceForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large")
question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer)
model.config.use_dummy_dataset = True
model.config.index_name = "exact"
retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer)
model.save_pretrained("./")
tokenizer.save_pretrained("./")
retriever.save_pretrained("./")
```
Note that the model is *uncased* so that all capital input letters are converted to lower-case.
## Usage: ## Usage:
*Note*: the model uses the *dummy* retriever as a default. Better results are obtained by using the full retriever,
by setting `config.index_name="legacy"` and `config.use_dummy_dataset=False`.
The model can be fine-tuned as follows:
```python ```python
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base") tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base")
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base", index_name="exact", use_dummy_dataset=True) retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base")
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever) model = RagTokenForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever)
input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt")
input_ids = tokenizer("What is the largest country in the world?", return_tensors="pt").input_ids outputs = model(input_dict["input_ids"], labels=input_dict["labels"])
generated = model.generate(input_ids=input_ids) loss = outputs.loss
generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
# => should give ["Asia ended in 2010 when China overtook Japan to become the world's second largest economy."] # train on loss
# Interesting answer. Definitely on topic, but might factual probably not fully correct.
``` ```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment