"tests/git@developer.sourcefind.cn:chenpangpang/diffusers.git" did not exist on "457abdf2cf31956a15df7233187b0b358307c7d1"
Unverified Commit 321c05ab authored by krevas's avatar krevas Committed by GitHub
Browse files

Model cards for finance-koelectra models (#5313)

* Add finance-koelectra readme card

* Add finance-koelectra readme card

* Add finance-koelectra readme card

* Add finance-koelectra readme card
parent 28a690a8
---
language: korean
---
# 📈 Financial Korean ELECTRA model
Pretrained ELECTRA Language Model for Korean (`finance-koelectra-base-discriminator`)
> ELECTRA is a new method for self-supervised language representation learning. It can be used to
> pre-train transformer networks using relatively little compute. ELECTRA models are trained to
> distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to
> the discriminator of a GAN.
More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB)
or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub.
## Stats
The current version of the model is trained on a financial news data of Naver news.
The final training corpus has a size of 25GB and 2.3B tokens.
This model was trained a cased model on a TITAN RTX for 500k steps.
## Usage
```python
from transformers import ElectraForPreTraining, ElectraTokenizer
import torch
discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-base-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-base-discriminator")
sentence = "내일 해당 종목이 대폭 상승할 것이다"
fake_sentence = "내일 해당 종목이 맛있게 상승할 것이다"
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
[print("%7s" % token, end="") for token in fake_tokens]
[print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]]
print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)])
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
---
language: korean
---
# 📈 Financial Korean ELECTRA model
Pretrained ELECTRA Language Model for Korean (`finance-koelectra-base-generator`)
> ELECTRA is a new method for self-supervised language representation learning. It can be used to
> pre-train transformer networks using relatively little compute. ELECTRA models are trained to
> distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to
> the discriminator of a GAN.
More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB)
or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub.
## Stats
The current version of the model is trained on a financial news data of Naver news.
The final training corpus has a size of 25GB and 2.3B tokens.
This model was trained a cased model on a TITAN RTX for 500k steps.
## Usage
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="krevas/finance-koelectra-base-generator",
tokenizer="krevas/finance-koelectra-base-generator"
)
print(fill_mask(f"내일 해당 종목이 대폭 {fill_mask.tokenizer.mask_token}할 것이다."))
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
---
language: korean
---
# 📈 Financial Korean ELECTRA model
Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-discriminator`)
> ELECTRA is a new method for self-supervised language representation learning. It can be used to
> pre-train transformer networks using relatively little compute. ELECTRA models are trained to
> distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to
> the discriminator of a GAN.
More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB)
or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub.
## Stats
The current version of the model is trained on a financial news data of Naver news.
The final training corpus has a size of 25GB and 2.3B tokens.
This model was trained a cased model on a TITAN RTX for 500k steps.
## Usage
```python
from transformers import ElectraForPreTraining, ElectraTokenizer
import torch
discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-small-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-small-discriminator")
sentence = "내일 해당 종목이 대폭 상승할 것이다"
fake_sentence = "내일 해당 종목이 맛있게 상승할 것이다"
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
[print("%7s" % token, end="") for token in fake_tokens]
[print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]]
print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)])
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
---
language: korean
---
# 📈 Financial Korean ELECTRA model
Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-generator`)
> ELECTRA is a new method for self-supervised language representation learning. It can be used to
> pre-train transformer networks using relatively little compute. ELECTRA models are trained to
> distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to
> the discriminator of a GAN.
More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB)
or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub.
## Stats
The current version of the model is trained on a financial news data of Naver news.
The final training corpus has a size of 25GB and 2.3B tokens.
This model was trained a cased model on a TITAN RTX for 500k steps.
## Usage
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="krevas/finance-koelectra-small-generator",
tokenizer="krevas/finance-koelectra-small-generator"
)
print(fill_mask(f"내일 해당 종목이 대폭 {fill_mask.tokenizer.mask_token}할 것이다."))
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment