Commit 31c23bd5 authored by thomwolf's avatar thomwolf
Browse files

[BIG] pytorch-transformers => transformers

parent 2f071fcb
......@@ -26,12 +26,12 @@ import torch
import torch.nn.functional as F
import numpy as np
from pytorch_transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig
from transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig
from pytorch_transformers import GPT2LMHeadModel, GPT2Tokenizer
from pytorch_transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from pytorch_transformers import XLNetLMHeadModel, XLNetTokenizer
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from transformers import XLNetLMHeadModel, XLNetTokenizer
from transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
......
......@@ -31,7 +31,7 @@ from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
from transformers import (WEIGHTS_NAME, BertConfig,
BertForSequenceClassification, BertTokenizer,
RobertaConfig,
RobertaForSequenceClassification,
......@@ -44,12 +44,12 @@ from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
DistilBertForSequenceClassification,
DistilBertTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from transformers import AdamW, WarmupLinearSchedule
from pytorch_transformers import glue_compute_metrics as compute_metrics
from pytorch_transformers import glue_output_modes as output_modes
from pytorch_transformers import glue_processors as processors
from pytorch_transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
logger = logging.getLogger(__name__)
......@@ -137,7 +137,7 @@ def train(args, train_dataset, model, tokenizer):
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM, DistilBERT and RoBERTa don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
......@@ -483,7 +483,7 @@ def main():
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
......
......@@ -35,7 +35,7 @@ from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule,
from transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
......@@ -188,7 +188,7 @@ def train(args, train_dataset, model, tokenizer):
labels = labels.to(args.device)
model.train()
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
......@@ -481,7 +481,7 @@ def main():
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
......
......@@ -32,13 +32,13 @@ from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
from transformers import (WEIGHTS_NAME, BertConfig,
BertForMultipleChoice, BertTokenizer,
XLNetConfig, XLNetForMultipleChoice,
XLNetTokenizer, RobertaConfig,
RobertaForMultipleChoice, RobertaTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from transformers import AdamW, WarmupLinearSchedule
from utils_multiple_choice import (convert_examples_to_features, processors)
......@@ -141,7 +141,7 @@ def train(args, train_dataset, model, tokenizer):
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
......@@ -508,7 +508,7 @@ def main():
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
......@@ -524,7 +524,7 @@ def main():
checkpoints = [args.output_dir]
# if args.eval_all_checkpoints: # can not use this to do test!!
# checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
# logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
# logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
......
......@@ -32,7 +32,7 @@ from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
from transformers import (WEIGHTS_NAME, BertConfig,
BertForQuestionAnswering, BertTokenizer,
XLMConfig, XLMForQuestionAnswering,
XLMTokenizer, XLNetConfig,
......@@ -40,7 +40,7 @@ from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
XLNetTokenizer,
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from transformers import AdamW, WarmupLinearSchedule
from utils_squad import (read_squad_examples, convert_examples_to_features,
RawResult, write_predictions,
......@@ -142,7 +142,7 @@ def train(args, train_dataset, model, tokenizer):
inputs.update({'cls_index': batch[5],
'p_mask': batch[6]})
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
......@@ -510,7 +510,7 @@ def main():
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
logger.info("Evaluate the following checkpoints: %s", checkpoints)
......
import tensorflow as tf
import tensorflow_datasets
from pytorch_transformers import *
from transformers import *
# Load dataset, tokenizer, model from pretrained model/vocabulary
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
......
......@@ -24,7 +24,7 @@ import math
import collections
from io import open
from pytorch_transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
from transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
# Required by XLNet evaluation method to compute optimal threshold (see write_predictions_extended() method)
from utils_squad_evaluate import find_all_best_thresh_v2, make_qid_to_has_ans, get_raw_scores
......
from pytorch_transformers import (
from transformers import (
AutoTokenizer, AutoConfig, AutoModel, AutoModelWithLMHead, AutoModelForSequenceClassification, AutoModelForQuestionAnswering
)
from pytorch_transformers.file_utils import add_start_docstrings
from transformers.file_utils import add_start_docstrings
dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex', 'sentencepiece', 'sacremoses']
......@@ -11,12 +11,12 @@ def config(*args, **kwargs):
# Using torch.hub !
import torch
config = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased') # Download configuration from S3 and cache.
config = torch.hub.load('huggingface/pytorch-transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = torch.hub.load('huggingface/pytorch-transformers', 'config', './test/bert_saved_model/my_configuration.json')
config = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False)
config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased') # Download configuration from S3 and cache.
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json')
config = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False)
assert config.output_attention == True
config, unused_kwargs = torch.hub.load('huggingface/pytorch-transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True)
config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True)
assert config.output_attention == True
assert unused_kwargs == {'foo': False}
......@@ -31,8 +31,8 @@ def tokenizer(*args, **kwargs):
# Using torch.hub !
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
"""
......@@ -45,13 +45,13 @@ def model(*args, **kwargs):
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased', output_attention=True) # Update configuration during loading
model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'model', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
......@@ -63,13 +63,13 @@ def modelWithLMHead(*args, **kwargs):
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'modelWithLMHead', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'modelWithLMHead', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'modelWithLMHead', 'bert-base-uncased', output_attention=True) # Update configuration during loading
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'modelWithLMHead', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
model = torch.hub.load('huggingface/transformers', 'modelWithLMHead', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
return AutoModelWithLMHead.from_pretrained(*args, **kwargs)
......@@ -81,13 +81,13 @@ def modelForSequenceClassification(*args, **kwargs):
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attention=True) # Update configuration during loading
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
......@@ -100,13 +100,13 @@ def modelForQuestionAnswering(*args, **kwargs):
# Using torch.hub !
import torch
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attention=True) # Update configuration during loading
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased') # Download model and configuration from S3 and cache.
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = torch.hub.load('huggingface/pytorch-transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs)
......@@ -25,7 +25,7 @@ To create the package for pypi.
(pypi suggest using twine as other methods upload files via plaintext.)
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi pytorch-transformers
pip install -i https://testpypi.python.org/pypi transformers
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
......@@ -37,8 +37,8 @@ from io import open
from setuptools import find_packages, setup
setup(
name="pytorch_transformers",
version="1.2.0",
name="transformers",
version="2.0.0",
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Google AI Language Team Authors, Open AI team Authors",
author_email="thomas@huggingface.co",
description="Repository of pre-trained NLP Transformer models: BERT & RoBERTa, GPT & GPT-2, Transformer-XL, XLNet and XLM",
......@@ -46,7 +46,7 @@ setup(
long_description_content_type="text/markdown",
keywords='NLP deep learning transformer pytorch BERT GPT GPT-2 google openai CMU',
license='Apache',
url="https://github.com/huggingface/pytorch-transformers",
url="https://github.com/huggingface/transformers",
packages=find_packages(exclude=["*.tests", "*.tests.*",
"tests.*", "tests"]),
install_requires=['numpy',
......@@ -58,7 +58,7 @@ setup(
'sacremoses'],
entry_points={
'console_scripts': [
"pytorch_transformers=pytorch_transformers.__main__:main",
"transformers=transformers.__main__:main",
]
},
# python_requires='>=3.5.0',
......
__version__ = "1.2.0"
__version__ = "2.0.0"
# Work around to update TensorFlow's absl.logging threshold which alters the
# default Python logging output behavior when present.
......@@ -17,7 +17,7 @@ import logging
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
# Files and general utilities
from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
from .file_utils import (TRANSFORMERS_CACHE, PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
cached_path, add_start_docstrings, add_end_docstrings,
WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME,
is_tf_available, is_torch_available)
......
......@@ -5,25 +5,25 @@ def main():
print(
"This command line utility let you convert original (author released) model checkpoint to pytorch.\n"
"It should be used as one of: \n"
">> pytorch_transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT, \n"
">> pytorch_transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG], \n"
">> pytorch_transformers transfo_xl TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG] or \n"
">> pytorch_transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG] or \n"
">> pytorch_transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME] or \n"
">> pytorch_transformers xlm XLM_CHECKPOINT_PATH PYTORCH_DUMP_OUTPUT")
">> transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT, \n"
">> transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG], \n"
">> transformers transfo_xl TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG] or \n"
">> transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG] or \n"
">> transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME] or \n"
">> transformers xlm XLM_CHECKPOINT_PATH PYTORCH_DUMP_OUTPUT")
else:
if sys.argv[1] == "bert":
try:
from .convert_bert_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
print("Should be used as `transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
......@@ -33,7 +33,7 @@ def main():
from .convert_openai_original_tf_checkpoint_to_pytorch import convert_openai_checkpoint_to_pytorch
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`")
print("Should be used as `transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`")
else:
OPENAI_GPT_CHECKPOINT_FOLDER_PATH = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......@@ -48,13 +48,13 @@ def main():
try:
from .convert_transfo_xl_original_tf_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
except ImportError:
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_transformers transfo_xl TF_CHECKPOINT/TF_DATASET_FILE PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
print("Should be used as `transformers transfo_xl TF_CHECKPOINT/TF_DATASET_FILE PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
else:
if 'ckpt' in sys.argv[2].lower():
TF_CHECKPOINT = sys.argv[2]
......@@ -72,14 +72,14 @@ def main():
try:
from .convert_gpt2_original_tf_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
except ImportError:
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
print("Should be used as `transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
else:
TF_CHECKPOINT = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......@@ -92,14 +92,14 @@ def main():
try:
from .convert_xlnet_original_tf_checkpoint_to_pytorch import convert_xlnet_checkpoint_to_pytorch
except ImportError:
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 5 or len(sys.argv) > 6:
# pylint: disable=line-too-long
print("Should be used as `pytorch_transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
print("Should be used as `transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
else:
TF_CHECKPOINT = sys.argv[2]
TF_CONFIG = sys.argv[3]
......@@ -118,7 +118,7 @@ def main():
if len(sys.argv) != 4:
# pylint: disable=line-too-long
print("Should be used as `pytorch_transformers xlm XLM_CHECKPOINT_PATH PYTORCH_DUMP_OUTPUT`")
print("Should be used as `transformers xlm XLM_CHECKPOINT_PATH PYTORCH_DUMP_OUTPUT`")
else:
XLM_CHECKPOINT_PATH = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......
......@@ -31,7 +31,7 @@ logger = logging.getLogger(__name__)
class AutoConfig(object):
r""":class:`~pytorch_transformers.AutoConfig` is a generic configuration class
r""":class:`~transformers.AutoConfig` is a generic configuration class
that will be instantiated as one of the configuration classes of the library
when created with the `AutoConfig.from_pretrained(pretrained_model_name_or_path)`
class method.
......@@ -76,7 +76,7 @@ class AutoConfig(object):
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing a configuration file saved using the :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.
cache_dir: (`optional`) string:
......
......@@ -45,7 +45,7 @@ BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class BertConfig(PretrainedConfig):
r"""
:class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
:class:`~transformers.BertConfig` is the configuration class to store the configuration of a
`BertModel`.
......
......@@ -59,7 +59,7 @@ class PretrainedConfig(object):
def save_pretrained(self, save_directory):
""" Save a configuration object to the directory `save_directory`, so that it
can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method.
can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method.
"""
assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"
......@@ -71,13 +71,13 @@ class PretrainedConfig(object):
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
r""" Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration.
Parameters:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing a configuration file saved using the :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.
cache_dir: (`optional`) string:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment