Unverified Commit 319beb64 authored by Dhananjay Shettigar's avatar Dhananjay Shettigar Committed by GitHub
Browse files

#12789 Replace assert statements with exceptions (#13909)

* #12789 Replace assert statements with exceptions

* fix-copies: made copy changes to utils_qa.py in examples/pytorch/question-answering and examples/tensorflow/question-answering

* minor refactor for clarity
parent 279ce5b7
......@@ -73,10 +73,12 @@ def postprocess_qa_predictions(
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
assert len(predictions) == 2, "`predictions` should be a tuple with two elements (start_logits, end_logits)."
if len(predictions) != 2:
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
all_start_logits, all_end_logits = predictions
assert len(predictions[0]) == len(features), f"Got {len(predictions[0])} predictions and {len(features)} features."
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
......@@ -212,7 +214,8 @@ def postprocess_qa_predictions(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
......@@ -283,12 +286,12 @@ def postprocess_qa_predictions_with_beam_search(
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
assert len(predictions) == 5, "`predictions` should be a tuple with five elements."
if len(predictions) != 5:
raise ValueError("`predictions` should be a tuple with five elements.")
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
assert len(predictions[0]) == len(
features
), f"Got {len(predictions[0])} predicitions and {len(features)} features."
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
......@@ -400,7 +403,8 @@ def postprocess_qa_predictions_with_beam_search(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
......
......@@ -73,10 +73,12 @@ def postprocess_qa_predictions(
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
assert len(predictions) == 2, "`predictions` should be a tuple with two elements (start_logits, end_logits)."
if len(predictions) != 2:
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
all_start_logits, all_end_logits = predictions
assert len(predictions[0]) == len(features), f"Got {len(predictions[0])} predictions and {len(features)} features."
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
......@@ -212,7 +214,8 @@ def postprocess_qa_predictions(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
......@@ -283,12 +286,12 @@ def postprocess_qa_predictions_with_beam_search(
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
assert len(predictions) == 5, "`predictions` should be a tuple with five elements."
if len(predictions) != 5:
raise ValueError("`predictions` should be a tuple with five elements.")
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
assert len(predictions[0]) == len(
features
), f"Got {len(predictions[0])} predicitions and {len(features)} features."
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
......@@ -400,7 +403,8 @@ def postprocess_qa_predictions_with_beam_search(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
......
......@@ -73,10 +73,12 @@ def postprocess_qa_predictions(
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
assert len(predictions) == 2, "`predictions` should be a tuple with two elements (start_logits, end_logits)."
if len(predictions) != 2:
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
all_start_logits, all_end_logits = predictions
assert len(predictions[0]) == len(features), f"Got {len(predictions[0])} predictions and {len(features)} features."
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
......@@ -212,7 +214,8 @@ def postprocess_qa_predictions(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
......@@ -283,12 +286,12 @@ def postprocess_qa_predictions_with_beam_search(
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
assert len(predictions) == 5, "`predictions` should be a tuple with five elements."
if len(predictions) != 5:
raise ValueError("`predictions` should be a tuple with five elements.")
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
assert len(predictions[0]) == len(
features
), f"Got {len(predictions[0])} predicitions and {len(features)} features."
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
......@@ -400,7 +403,8 @@ def postprocess_qa_predictions_with_beam_search(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
assert os.path.isdir(output_dir), f"{output_dir} is not a directory."
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment