Unverified Commit 307a7d0b authored by fxmarty's avatar fxmarty Committed by GitHub
Browse files

[️ removed a default argument] Make `AttentionMaskConverter` compatible with...

[️ removed a default argument] Make `AttentionMaskConverter` compatible with `torch.compile(..., fullgraph=True)` (#27868)

* remove bugged torch.float32 default

* add test

* fix tests

* fix test

* fix doc
parent 633215ba
...@@ -33,7 +33,7 @@ class AttentionMaskConverter: ...@@ -33,7 +33,7 @@ class AttentionMaskConverter:
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter >>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
>>> converter = AttentionMaskConverter(True) >>> converter = AttentionMaskConverter(True)
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, 5) >>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
...@@ -66,7 +66,7 @@ class AttentionMaskConverter: ...@@ -66,7 +66,7 @@ class AttentionMaskConverter:
batch_size: int, batch_size: int,
query_length: int, query_length: int,
key_value_length: int, key_value_length: int,
dtype: torch.dtype = torch.float32, dtype: torch.dtype,
device: Union[torch.device, "str"] = "cpu", device: Union[torch.device, "str"] = "cpu",
) -> torch.Tensor: ) -> torch.Tensor:
""" """
...@@ -98,8 +98,8 @@ class AttentionMaskConverter: ...@@ -98,8 +98,8 @@ class AttentionMaskConverter:
self, self,
attention_mask_2d: torch.Tensor, attention_mask_2d: torch.Tensor,
query_length: int, query_length: int,
dtype: torch.dtype,
key_value_length: Optional[int] = None, key_value_length: Optional[int] = None,
dtype: torch.dtype = torch.float32,
) -> torch.Tensor: ) -> torch.Tensor:
""" """
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
...@@ -215,7 +215,7 @@ def _prepare_4d_causal_attention_mask( ...@@ -215,7 +215,7 @@ def _prepare_4d_causal_attention_mask(
# 4d mask is passed through the layers # 4d mask is passed through the layers
if attention_mask is not None: if attention_mask is not None:
attention_mask = attn_mask_converter.to_4d( attention_mask = attn_mask_converter.to_4d(
attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
) )
else: else:
attention_mask = attn_mask_converter.to_causal_4d( attention_mask = attn_mask_converter.to_causal_4d(
......
...@@ -85,7 +85,12 @@ if is_torch_available(): ...@@ -85,7 +85,12 @@ if is_torch_available():
T5Config, T5Config,
T5ForConditionalGeneration, T5ForConditionalGeneration,
) )
from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_attn_mask_utils import (
AttentionMaskConverter,
_create_4d_causal_attention_mask,
_prepare_4d_attention_mask,
_prepare_4d_causal_attention_mask,
)
from transformers.modeling_utils import shard_checkpoint from transformers.modeling_utils import shard_checkpoint
# Fake pretrained models for tests # Fake pretrained models for tests
...@@ -150,6 +155,32 @@ if is_torch_available(): ...@@ -150,6 +155,32 @@ if is_torch_available():
def tie_weights(self): def tie_weights(self):
self.decoder.weight = self.base.linear.weight self.decoder.weight = self.base.linear.weight
class Prepare4dCausalAttentionMaskModel(nn.Module):
def forward(self, inputs_embeds):
batch_size, seq_length, _ = inputs_embeds.shape
past_key_values_length = 4
attention_mask = _prepare_4d_causal_attention_mask(
None, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
return attention_mask
class Create4dCausalAttentionMaskModel(nn.Module):
def forward(self, inputs_embeds):
batch_size, seq_length, _ = inputs_embeds.shape
past_key_values_length = 4
attention_mask = _create_4d_causal_attention_mask(
(batch_size, seq_length),
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
return attention_mask
class Prepare4dAttentionMaskModel(nn.Module):
def forward(self, mask, inputs_embeds):
attention_mask = _prepare_4d_attention_mask(mask, dtype=inputs_embeds.dtype)
return attention_mask
if is_flax_available(): if is_flax_available():
from transformers import FlaxBertModel from transformers import FlaxBertModel
...@@ -1493,7 +1524,7 @@ class AttentionMaskTester(unittest.TestCase): ...@@ -1493,7 +1524,7 @@ class AttentionMaskTester(unittest.TestCase):
for bsz_idx, seq_idx in additional_mask: for bsz_idx, seq_idx in additional_mask:
mask_2d[bsz_idx, seq_idx] = 0 mask_2d[bsz_idx, seq_idx] = 0
mask_4d = mask_converter.to_4d(mask_2d, query_length=q_len, key_value_length=kv_len) mask_4d = mask_converter.to_4d(mask_2d, query_length=q_len, key_value_length=kv_len, dtype=torch.float32)
assert mask_4d.shape == (bsz, 1, q_len, kv_len) assert mask_4d.shape == (bsz, 1, q_len, kv_len)
...@@ -1529,7 +1560,9 @@ class AttentionMaskTester(unittest.TestCase): ...@@ -1529,7 +1560,9 @@ class AttentionMaskTester(unittest.TestCase):
self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d) self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)
def check_to_causal(self, mask_converter, q_len, kv_len, bsz=3): def check_to_causal(self, mask_converter, q_len, kv_len, bsz=3):
mask_4d = mask_converter.to_causal_4d(bsz, query_length=q_len, key_value_length=kv_len, device=torch_device) mask_4d = mask_converter.to_causal_4d(
bsz, query_length=q_len, key_value_length=kv_len, device=torch_device, dtype=torch.float32
)
if q_len == 1 and mask_converter.sliding_window is None: if q_len == 1 and mask_converter.sliding_window is None:
# no causal mask if q_len is 1 # no causal mask if q_len is 1
...@@ -1621,3 +1654,38 @@ class AttentionMaskTester(unittest.TestCase): ...@@ -1621,3 +1654,38 @@ class AttentionMaskTester(unittest.TestCase):
self.check_to_causal(mask_converter, q_len=3, kv_len=7) self.check_to_causal(mask_converter, q_len=3, kv_len=7)
# non auto-regressive case # non auto-regressive case
self.check_to_causal(mask_converter, q_len=7, kv_len=7) self.check_to_causal(mask_converter, q_len=7, kv_len=7)
def test_torch_compile_fullgraph(self):
model = Prepare4dCausalAttentionMaskModel()
inputs_embeds = torch.rand([1, 3, 32])
res_non_compiled = model(inputs_embeds)
compiled_model = torch.compile(model, fullgraph=True)
res_compiled = compiled_model(inputs_embeds)
self.assertTrue(torch.equal(res_non_compiled, res_compiled))
model = Create4dCausalAttentionMaskModel()
inputs_embeds = torch.rand(2, 4, 16)
res_non_compiled = model(inputs_embeds)
compiled_model = torch.compile(model, fullgraph=True)
res_compiled = compiled_model(inputs_embeds)
self.assertTrue(torch.equal(res_non_compiled, res_compiled))
model = Prepare4dAttentionMaskModel()
mask = torch.ones(2, 4)
mask[0, :2] = 0
inputs_embeds = torch.rand(2, 4, 16)
res_non_compiled = model(mask, inputs_embeds)
compiled_model = torch.compile(model, fullgraph=True)
res_compiled = compiled_model(mask, inputs_embeds)
self.assertTrue(torch.equal(res_non_compiled, res_compiled))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment