German BERT ([BERT-base-german-cased](https://huggingface.co/bert-base-german-cased)) fine-tuned on [Legal-Entity-Recognition](https://github.com/elenanereiss/Legal-Entity-Recognition) dataset for **LER** (NER) downstream task.
## Details of the downstream task (NER) - Dataset
[Legal-Entity-Recognition](https://github.com/elenanereiss/Legal-Entity-Recognition): Fine-grained Named Entity Recognition in Legal Documents.
Court decisions from 2017 and 2018 were selected for the dataset, published online by the [Federal Ministry of Justice and Consumer Protection](http://www.rechtsprechung-im-internet.de). The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG).
| Split | # Samples |
| ---------------------- | ----- |
| Train | 1657048 |
| Eval | 500000 |
- Training script: [Fine-tuning script for NER provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner.py)
Colab: [How to fine-tune a model for NER using HF scripts](https://colab.research.google.com/drive/156Qrd7NsUHwA3nmQ6gXdZY0NzOvqk9AT?usp=sharing)