Commit 2ab78325 authored by Aymeric Augustin's avatar Aymeric Augustin
Browse files

Fix F821 flake8 warning (x47).

Ignore warnings related to Python 2, because it's going away soon.
parent 631be270
......@@ -108,7 +108,7 @@ def read_swag_examples(input_file, is_training=True):
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, "utf-8") for cell in line)
line = list(unicode(cell, "utf-8") for cell in line) # noqa: F821
lines.append(line)
if is_training and lines[0][-1] != "label":
......
......@@ -225,7 +225,7 @@ def main():
# Batch size == 1. to add more examples please use num_return_sequences > 1
generated_sequence = output_sequences[0].tolist()
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
text = text[: t.find(args.stop_token) if args.stop_token else None]
text = text[: text.find(args.stop_token) if args.stop_token else None]
print(text)
......
......@@ -184,7 +184,7 @@ class SwagProcessor(DataProcessor):
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, "utf-8") for cell in line)
line = list(unicode(cell, "utf-8") for cell in line) # noqa: F821
lines.append(line)
return lines
......
......@@ -68,6 +68,14 @@ TF_XXX_PRETRAINED_MODEL_ARCHIVE_MAP = {
#
# See the conversion methods in modeling_tf_pytorch_utils.py for more details
####################################################
TFXxxAttention = tf.keras.layers.Layer
TFXxxIntermediate = tf.keras.layers.Layer
TFXxxOutput = tf.keras.layers.Layer
class TFXxxLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super(TFXxxLayer, self).__init__(**kwargs)
......@@ -316,6 +324,9 @@ class TFXxxModel(TFXxxPreTrainedModel):
return outputs
TFXxxMLMHead = tf.keras.layers.Layer
@add_start_docstrings(
"""Xxx Model with a `language modeling` head on top. """, XXX_START_DOCSTRING, XXX_INPUTS_DOCSTRING
)
......
......@@ -135,6 +135,14 @@ def load_tf_weights_in_xxx(model, config, tf_checkpoint_path):
#
# See the conversion methods in modeling_tf_pytorch_utils.py for more details
####################################################
XxxAttention = nn.Module
XxxIntermediate = nn.Module
XxxOutput = nn.Module
class XxxLayer(nn.Module):
def __init__(self, config):
super(XxxLayer, self).__init__()
......@@ -160,6 +168,16 @@ class XxxLayer(nn.Module):
# pointers for your model and the weights initialization
# method if its not fully covered by PreTrainedModel's default method
####################################################
XxxLayerNorm = torch.nn.LayerNorm
XxxEmbeddings = nn.Module
XxxEncoder = nn.Module
XxxPooler = nn.Module
class XxxPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
......
import os
from argparse import ArgumentParser
from getpass import getpass
from typing import List, Union
from transformers.commands import BaseTransformersCLICommand
from transformers.hf_api import HfApi, HfFolder, HTTPError
......@@ -96,8 +97,7 @@ class LogoutCommand(BaseUserCommand):
class ListObjsCommand(BaseUserCommand):
def tabulate(self, rows, headers):
# type: (List[List[Union[str, int]]], List[str]) -> str
def tabulate(self, rows: List[List[Union[str, int]]], headers: List[str]) -> str:
"""
Inspired by:
stackoverflow.com/a/8356620/593036
......
......@@ -102,7 +102,7 @@ class DataProcessor(object):
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, "utf-8") for cell in line)
line = list(unicode(cell, "utf-8") for cell in line) # noqa: F821
lines.append(line)
return lines
......
......@@ -419,7 +419,7 @@ def get_from_cache(
with open(meta_path, "w") as meta_file:
output_string = json.dumps(meta)
if sys.version_info[0] == 2 and isinstance(output_string, str):
output_string = unicode(output_string, "utf-8") # The beauty of python 2
output_string = unicode(output_string, "utf-8") # noqa: F821
meta_file.write(output_string)
return cache_path
......@@ -14,8 +14,10 @@
# limitations under the License.
from __future__ import absolute_import, division, print_function
import io
import os
from os.path import expanduser
from typing import List
import requests
import six
......@@ -93,7 +95,7 @@ class HfApi:
return d["user"]
def logout(self, token):
# type: (...) -> void
# type: (...) -> None
"""
Call HF API to log out.
"""
......@@ -135,8 +137,7 @@ class HfApi:
pf.close()
return urls.access
def list_objs(self, token):
# type: (...) -> List[S3Obj]
def list_objs(self, token) -> List[S3Obj]:
"""
Call HF API to list all stored files for user.
"""
......@@ -156,9 +157,7 @@ class TqdmProgressFileReader:
for implementation details.
"""
def __init__(
self, f # type: io.BufferedReader
):
def __init__(self, f: io.BufferedReader):
self.f = f
self.total_size = os.fstat(f.fileno()).st_size # type: int
self.pbar = tqdm(total=self.total_size, leave=False)
......
......@@ -339,7 +339,9 @@ class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode) # noqa: F821
):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
......@@ -459,7 +461,9 @@ class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode) # noqa: F821
):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
......
......@@ -311,7 +311,9 @@ class TFAlbertLayer(tf.keras.layers.Layer):
config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn"
)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode) # noqa: F821
):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
......@@ -452,7 +454,9 @@ class TFAlbertMLMHead(tf.keras.layers.Layer):
self.dense = tf.keras.layers.Dense(
config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode) # noqa: F821
):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
......
......@@ -690,9 +690,9 @@ class TFAutoModelForQuestionAnswering(object):
elif isinstance(config, BertConfig):
return TFBertForQuestionAnswering(config)
elif isinstance(config, XLNetConfig):
return TFXLNetForQuestionAnswering(config)
raise NotImplementedError("TFXLNetForQuestionAnswering isn't implemented")
elif isinstance(config, XLMConfig):
return TFXLMForQuestionAnswering(config)
raise NotImplementedError("TFXLMForQuestionAnswering isn't implemented")
raise ValueError("Unrecognized configuration class {}".format(config))
@classmethod
......
......@@ -315,7 +315,9 @@ class TFBertIntermediate(tf.keras.layers.Layer):
self.dense = tf.keras.layers.Dense(
config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode) # noqa: F821
):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
......@@ -420,7 +422,9 @@ class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
self.dense = tf.keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode) # noqa: F821
):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
......
......@@ -295,7 +295,7 @@ class TFXLNetFeedForward(tf.keras.layers.Layer):
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
if isinstance(config.ff_activation, str) or (
sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)
sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode) # noqa: F821
):
self.activation_function = ACT2FN[config.ff_activation]
else:
......@@ -483,7 +483,7 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
if dtype is not None and dtype != tf.float32:
fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype)
if self.clamp_len > 0:
fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -clamp_len, clamp_len)
fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len)
pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
return pos_emb
......
......@@ -431,7 +431,7 @@ class XLNetFeedForward(nn.Module):
self.layer_2 = nn.Linear(config.d_inner, config.d_model)
self.dropout = nn.Dropout(config.dropout)
if isinstance(config.ff_activation, str) or (
sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)
sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode) # noqa: F821
):
self.activation_function = ACT2FN[config.ff_activation]
else:
......
......@@ -35,7 +35,7 @@ class TokenizerUtilsTest(unittest.TestCase):
for special_tok in tokenizer.all_special_tokens:
if six.PY2:
self.assertIsInstance(special_tok, unicode)
self.assertIsInstance(special_tok, unicode) # noqa: F821
else:
self.assertIsInstance(special_tok, str)
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
......
......@@ -156,7 +156,7 @@ class AlbertTokenizer(PreTrainedTokenizer):
"""
text = self.preprocess_text(text)
# note(zhiliny): in some systems, sentencepiece only accepts str for py2
if six.PY2 and isinstance(text, unicode):
if six.PY2 and isinstance(text, unicode): # noqa: F821
text = text.encode("utf-8")
if not sample:
......
......@@ -80,7 +80,7 @@ def bytes_to_unicode():
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
"""
_chr = unichr if sys.version_info[0] == 2 else chr
_chr = unichr if sys.version_info[0] == 2 else chr # noqa: F821
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
......
......@@ -36,10 +36,10 @@ try:
except ImportError:
pass
# if sys.version_info[0] == 2:
# import cPickle as pickle
# else:
# import pickle
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
logger = logging.getLogger(__name__)
......
......@@ -252,10 +252,10 @@ class PreTrainedTokenizer(object):
if key in self.SPECIAL_TOKENS_ATTRIBUTES:
if key == "additional_special_tokens":
assert isinstance(value, (list, tuple)) and all(
isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value
isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value # noqa: F821
)
else:
assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode)) # noqa: F821
setattr(self, key, value)
@classmethod
......@@ -567,7 +567,7 @@ class PreTrainedTokenizer(object):
to_add_tokens = []
for token in new_tokens:
assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode)) # noqa: F821
if self.init_kwargs.get("do_lower_case", False) and token not in self.all_special_tokens:
token = token.lower()
if (
......@@ -650,11 +650,11 @@ class PreTrainedTokenizer(object):
assert key in self.SPECIAL_TOKENS_ATTRIBUTES
if key == "additional_special_tokens":
assert isinstance(value, (list, tuple)) and all(
isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value
isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value # noqa: F821
)
added_tokens += self.add_tokens(value)
else:
assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode)) # noqa: F821
added_tokens += self.add_tokens([value])
logger.info("Assigning %s to the %s key of the tokenizer", value, key)
setattr(self, key, value)
......@@ -746,7 +746,7 @@ class PreTrainedTokenizer(object):
if tokens is None:
return None
if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)): # noqa: F821
return self._convert_token_to_id_with_added_voc(tokens)
ids = []
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment