Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
2505357e
Unverified
Commit
2505357e
authored
Jun 18, 2024
by
Quentin Gallouédec
Committed by
GitHub
Jun 18, 2024
Browse files
Fix documentation typos (#31476)
Fix doc typo
parent
4691ffbd
Changes
14
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
14 additions
and
14 deletions
+14
-14
src/transformers/models/cohere/configuration_cohere.py
src/transformers/models/cohere/configuration_cohere.py
+1
-1
src/transformers/models/gemma/configuration_gemma.py
src/transformers/models/gemma/configuration_gemma.py
+1
-1
src/transformers/models/gemma/diff_gemma.py
src/transformers/models/gemma/diff_gemma.py
+1
-1
src/transformers/models/jamba/configuration_jamba.py
src/transformers/models/jamba/configuration_jamba.py
+1
-1
src/transformers/models/llama/configuration_llama.py
src/transformers/models/llama/configuration_llama.py
+1
-1
src/transformers/models/mistral/configuration_mistral.py
src/transformers/models/mistral/configuration_mistral.py
+1
-1
src/transformers/models/mixtral/configuration_mixtral.py
src/transformers/models/mixtral/configuration_mixtral.py
+1
-1
src/transformers/models/olmo/configuration_olmo.py
src/transformers/models/olmo/configuration_olmo.py
+1
-1
src/transformers/models/phi/configuration_phi.py
src/transformers/models/phi/configuration_phi.py
+1
-1
src/transformers/models/phi3/configuration_phi3.py
src/transformers/models/phi3/configuration_phi3.py
+1
-1
src/transformers/models/qwen2/configuration_qwen2.py
src/transformers/models/qwen2/configuration_qwen2.py
+1
-1
src/transformers/models/qwen2_moe/configuration_qwen2_moe.py
src/transformers/models/qwen2_moe/configuration_qwen2_moe.py
+1
-1
src/transformers/models/stablelm/configuration_stablelm.py
src/transformers/models/stablelm/configuration_stablelm.py
+1
-1
src/transformers/models/starcoder2/configuration_starcoder2.py
...ransformers/models/starcoder2/configuration_starcoder2.py
+1
-1
No files found.
src/transformers/models/cohere/configuration_cohere.py
View file @
2505357e
...
...
@@ -53,7 +53,7 @@ class CohereConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/gemma/configuration_gemma.py
View file @
2505357e
...
...
@@ -47,7 +47,7 @@ class GemmaConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/gemma/diff_gemma.py
View file @
2505357e
...
...
@@ -64,7 +64,7 @@ class GemmaConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/jamba/configuration_jamba.py
View file @
2505357e
...
...
@@ -53,7 +53,7 @@ class JambaConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
...
...
src/transformers/models/llama/configuration_llama.py
View file @
2505357e
...
...
@@ -51,7 +51,7 @@ class LlamaConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/mistral/configuration_mistral.py
View file @
2505357e
...
...
@@ -49,7 +49,7 @@ class MistralConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
...
...
src/transformers/models/mixtral/configuration_mixtral.py
View file @
2505357e
...
...
@@ -49,7 +49,7 @@ class MixtralConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
...
...
src/transformers/models/olmo/configuration_olmo.py
View file @
2505357e
...
...
@@ -51,7 +51,7 @@ class OlmoConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/phi/configuration_phi.py
View file @
2505357e
...
...
@@ -47,7 +47,7 @@ class PhiConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/phi3/configuration_phi3.py
View file @
2505357e
...
...
@@ -47,7 +47,7 @@ class Phi3Config(PretrainedConfig):
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/qwen2/configuration_qwen2.py
View file @
2505357e
...
...
@@ -47,7 +47,7 @@ class Qwen2Config(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
...
...
src/transformers/models/qwen2_moe/configuration_qwen2_moe.py
View file @
2505357e
...
...
@@ -47,7 +47,7 @@ class Qwen2MoeConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
...
...
src/transformers/models/stablelm/configuration_stablelm.py
View file @
2505357e
...
...
@@ -48,7 +48,7 @@ class StableLmConfig(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
...
...
src/transformers/models/starcoder2/configuration_starcoder2.py
View file @
2505357e
...
...
@@ -47,7 +47,7 @@ class Starcoder2Config(PretrainedConfig):
num_key_value_heads (`int`, *optional*, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
`num_key_value_heads=1
`
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment