Unverified Commit 22fa0a60 authored by Yusuke Mori's avatar Yusuke Mori Committed by GitHub
Browse files

Add documentation for BertJapanese (#11219)



* Start writing BERT-Japanese doc

* Fix typo, Update toctree

* Modify model file to use comment for document, Add examples

* Clean bert_japanese by make style

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Split a big code block into two

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add prefix >>> to all lines in code blocks

* Clean bert_japanese by make fixup
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 896d7be9
...@@ -442,6 +442,7 @@ TensorFlow and/or Flax. ...@@ -442,6 +442,7 @@ TensorFlow and/or Flax.
model_doc/bert model_doc/bert
model_doc/bertweet model_doc/bertweet
model_doc/bertgeneration model_doc/bertgeneration
model_doc/bert_japanese
model_doc/bigbird model_doc/bigbird
model_doc/blenderbot model_doc/blenderbot
model_doc/blenderbot_small model_doc/blenderbot_small
......
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
BertJapanese
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The BERT models trained on Japanese text.
There are models with two different tokenization methods:
- Tokenize with MeCab and WordPiece. This requires some extra dependencies, `fugashi
<https://github.com/polm/fugashi>`__ which is a wrapper around `MeCab <https://taku910.github.io/mecab/>`__.
- Tokenize into characters.
To use `MecabTokenizer`, you should ``pip install transformers["ja"]`` (or ``pip install -e .["ja"]`` if you install
from source) to install dependencies.
See `details on cl-tohoku repository <https://github.com/cl-tohoku/bert-japanese>`__.
Example of using a model with MeCab and WordPiece tokenization:
.. code-block::
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs['input_ids'][0]))
[CLS] 吾輩 は 猫 で ある 。 [SEP]
>>> outputs = bertjapanese(**inputs)
Example of using a model with Character tokenization:
.. code-block::
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs['input_ids'][0]))
[CLS] 吾 輩 は 猫 で あ る 。 [SEP]
>>> outputs = bertjapanese(**inputs)
Tips:
- This implementation is the same as BERT, except for tokenization method. Refer to the :doc:`documentation of BERT
<bert>` for more usage examples.
BertJapaneseTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BertJapaneseTokenizer
:members:
...@@ -70,7 +70,25 @@ PRETRAINED_INIT_CONFIGURATION = { ...@@ -70,7 +70,25 @@ PRETRAINED_INIT_CONFIGURATION = {
class BertJapaneseTokenizer(BertTokenizer): class BertJapaneseTokenizer(BertTokenizer):
"""BERT tokenizer for Japanese text""" r"""
Construct a BERT tokenizer for Japanese text, based on a MecabTokenizer.
Args:
vocab_file (:obj:`str`):
Path to a one-wordpiece-per-line vocabulary file.
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
do_word_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to do word tokenization.
do_subword_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to do subword tokenization.
word_tokenizer_type (:obj:`str`, `optional`, defaults to :obj:`"basic"`):
Type of word tokenizer.
subword_tokenizer_type (:obj:`str`, `optional`, defaults to :obj:`"wordpiece"`):
Type of subword tokenizer.
mecab_kwargs (:obj:`str`, `optional`):
Dictionary passed to the :obj:`MecabTokenizer` constructor.
"""
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
...@@ -94,23 +112,6 @@ class BertJapaneseTokenizer(BertTokenizer): ...@@ -94,23 +112,6 @@ class BertJapaneseTokenizer(BertTokenizer):
mecab_kwargs=None, mecab_kwargs=None,
**kwargs **kwargs
): ):
"""
Constructs a MecabBertTokenizer.
Args:
**vocab_file**: Path to a one-wordpiece-per-line vocabulary file.
**do_lower_case**: (`optional`) boolean (default True)
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
**do_word_tokenize**: (`optional`) boolean (default True)
Whether to do word tokenization.
**do_subword_tokenize**: (`optional`) boolean (default True)
Whether to do subword tokenization.
**word_tokenizer_type**: (`optional`) string (default "basic")
Type of word tokenizer.
**subword_tokenizer_type**: (`optional`) string (default "wordpiece")
Type of subword tokenizer.
**mecab_kwargs**: (`optional`) dict passed to `MecabTokenizer` constructor (default None)
"""
super(BertTokenizer, self).__init__( super(BertTokenizer, self).__init__(
unk_token=unk_token, unk_token=unk_token,
sep_token=sep_token, sep_token=sep_token,
...@@ -230,7 +231,7 @@ class MecabTokenizer: ...@@ -230,7 +231,7 @@ class MecabTokenizer:
import fugashi import fugashi
except ModuleNotFoundError as error: except ModuleNotFoundError as error:
raise error.__class__( raise error.__class__(
"You need to install fugashi to use MecabTokenizer." "You need to install fugashi to use MecabTokenizer. "
"See https://pypi.org/project/fugashi/ for installation." "See https://pypi.org/project/fugashi/ for installation."
) )
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment