Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
21f01964
Unverified
Commit
21f01964
authored
Nov 28, 2018
by
Thomas Wolf
Committed by
GitHub
Nov 28, 2018
Browse files
Merge pull request #58 from lliimsft/master
Bug fix in examples;correct t_total for distributed training;run pred…
parents
32167cdf
0aaedcc0
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
42 additions
and
22 deletions
+42
-22
examples/run_classifier.py
examples/run_classifier.py
+11
-9
examples/run_squad.py
examples/run_squad.py
+31
-13
No files found.
examples/run_classifier.py
View file @
21f01964
...
@@ -33,6 +33,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -33,6 +33,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForSequenceClassification
from
pytorch_pretrained_bert.modeling
import
BertForSequenceClassification
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
...
@@ -155,8 +156,8 @@ class MnliProcessor(DataProcessor):
...
@@ -155,8 +156,8 @@ class MnliProcessor(DataProcessor):
if
i
==
0
:
if
i
==
0
:
continue
continue
guid
=
"%s-%s"
%
(
set_type
,
line
[
0
])
guid
=
"%s-%s"
%
(
set_type
,
line
[
0
])
text_a
=
line
[
8
]
)
text_a
=
line
[
8
]
text_b
=
line
[
9
]
)
text_b
=
line
[
9
]
label
=
line
[
-
1
]
label
=
line
[
-
1
]
examples
.
append
(
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
))
...
@@ -482,7 +483,7 @@ def main():
...
@@ -482,7 +483,7 @@ def main():
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
len
(
train_examples
)
/
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
)
# Prepare model
# Prepare model
model
=
BertForSequenceClassification
.
from_pretrained
(
args
.
bert_model
,
len
(
label_list
),
model
=
BertForSequenceClassification
.
from_pretrained
(
args
.
bert_model
,
cache_dir
=
PYTORCH_PRETRAINED_BERT_CACHE
/
'distributed_{}'
.
format
(
args
.
local_rank
))
cache_dir
=
PYTORCH_PRETRAINED_BERT_CACHE
/
'distributed_{}'
.
format
(
args
.
local_rank
))
if
args
.
fp16
:
if
args
.
fp16
:
model
.
half
()
model
.
half
()
...
@@ -507,10 +508,13 @@ def main():
...
@@ -507,10 +508,13 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.0
}
]
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_steps
)
t_total
=
t_total
)
global_step
=
0
global_step
=
0
if
args
.
do_train
:
if
args
.
do_train
:
...
@@ -571,7 +575,7 @@ def main():
...
@@ -571,7 +575,7 @@ def main():
model
.
zero_grad
()
model
.
zero_grad
()
global_step
+=
1
global_step
+=
1
if
args
.
do_eval
:
if
args
.
do_eval
and
(
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
)
:
eval_examples
=
processor
.
get_dev_examples
(
args
.
data_dir
)
eval_examples
=
processor
.
get_dev_examples
(
args
.
data_dir
)
eval_features
=
convert_examples_to_features
(
eval_features
=
convert_examples_to_features
(
eval_examples
,
label_list
,
args
.
max_seq_length
,
tokenizer
)
eval_examples
,
label_list
,
args
.
max_seq_length
,
tokenizer
)
...
@@ -583,10 +587,8 @@ def main():
...
@@ -583,10 +587,8 @@ def main():
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_label_ids
=
torch
.
tensor
([
f
.
label_id
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_label_ids
=
torch
.
tensor
([
f
.
label_id
for
f
in
eval_features
],
dtype
=
torch
.
long
)
eval_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label_ids
)
eval_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label_ids
)
if
args
.
local_rank
==
-
1
:
# Run prediction for full data
eval_sampler
=
SequentialSampler
(
eval_data
)
eval_sampler
=
SequentialSampler
(
eval_data
)
else
:
eval_sampler
=
DistributedSampler
(
eval_data
)
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
model
.
eval
()
model
.
eval
()
...
...
examples/run_squad.py
View file @
21f01964
...
@@ -25,6 +25,7 @@ import json
...
@@ -25,6 +25,7 @@ import json
import
math
import
math
import
os
import
os
import
random
import
random
import
pickle
from
tqdm
import
tqdm
,
trange
from
tqdm
import
tqdm
,
trange
import
numpy
as
np
import
numpy
as
np
...
@@ -35,6 +36,7 @@ from torch.utils.data.distributed import DistributedSampler
...
@@ -35,6 +36,7 @@ from torch.utils.data.distributed import DistributedSampler
from
pytorch_pretrained_bert.tokenization
import
whitespace_tokenize
,
BasicTokenizer
,
BertTokenizer
from
pytorch_pretrained_bert.tokenization
import
whitespace_tokenize
,
BasicTokenizer
,
BertTokenizer
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
from
pytorch_pretrained_bert.modeling
import
BertForQuestionAnswering
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.optimization
import
BertAdam
from
pytorch_pretrained_bert.file_utils
import
PYTORCH_PRETRAINED_BERT_CACHE
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
...
@@ -749,6 +751,10 @@ def main():
...
@@ -749,6 +751,10 @@ def main():
type
=
int
,
type
=
int
,
default
=
1
,
default
=
1
,
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
)
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
)
parser
.
add_argument
(
"--do_lower_case"
,
default
=
True
,
action
=
'store_true'
,
help
=
"Whether to lower case the input text. True for uncased models, False for cased models."
)
parser
.
add_argument
(
"--local_rank"
,
parser
.
add_argument
(
"--local_rank"
,
type
=
int
,
type
=
int
,
default
=-
1
,
default
=-
1
,
...
@@ -845,20 +851,34 @@ def main():
...
@@ -845,20 +851,34 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.0
}
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay_rate'
:
0.0
}
]
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_steps
)
t_total
=
t_total
)
global_step
=
0
global_step
=
0
if
args
.
do_train
:
if
args
.
do_train
:
train_features
=
convert_examples_to_features
(
cached_train_features_file
=
args
.
train_file
+
'_{0}_{1}_{2}_{3}'
.
format
(
examples
=
train_examples
,
args
.
bert_model
,
str
(
args
.
max_seq_length
),
str
(
args
.
doc_stride
),
str
(
args
.
max_query_length
))
tokenizer
=
tokenizer
,
train_features
=
None
max_seq_length
=
args
.
max_seq_length
,
try
:
doc_stride
=
args
.
doc_stride
,
with
open
(
cached_train_features_file
,
"rb"
)
as
reader
:
max_query_length
=
args
.
max_query_length
,
train_features
=
pickle
.
load
(
reader
)
is_training
=
True
)
except
:
train_features
=
convert_examples_to_features
(
examples
=
train_examples
,
tokenizer
=
tokenizer
,
max_seq_length
=
args
.
max_seq_length
,
doc_stride
=
args
.
doc_stride
,
max_query_length
=
args
.
max_query_length
,
is_training
=
True
)
if
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
:
logger
.
info
(
" Saving train features into cached file %s"
,
cached_train_features_file
)
with
open
(
cached_train_features_file
,
"wb"
)
as
writer
:
train_features
=
pickle
.
dump
(
train_features
,
writer
)
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num orig examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num orig examples = %d"
,
len
(
train_examples
))
logger
.
info
(
" Num split examples = %d"
,
len
(
train_features
))
logger
.
info
(
" Num split examples = %d"
,
len
(
train_features
))
...
@@ -913,7 +933,7 @@ def main():
...
@@ -913,7 +933,7 @@ def main():
model
.
zero_grad
()
model
.
zero_grad
()
global_step
+=
1
global_step
+=
1
if
args
.
do_predict
:
if
args
.
do_predict
and
(
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
)
:
eval_examples
=
read_squad_examples
(
eval_examples
=
read_squad_examples
(
input_file
=
args
.
predict_file
,
is_training
=
False
)
input_file
=
args
.
predict_file
,
is_training
=
False
)
eval_features
=
convert_examples_to_features
(
eval_features
=
convert_examples_to_features
(
...
@@ -934,10 +954,8 @@ def main():
...
@@ -934,10 +954,8 @@ def main():
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
eval_features
],
dtype
=
torch
.
long
)
all_example_index
=
torch
.
arange
(
all_input_ids
.
size
(
0
),
dtype
=
torch
.
long
)
all_example_index
=
torch
.
arange
(
all_input_ids
.
size
(
0
),
dtype
=
torch
.
long
)
eval_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_example_index
)
eval_data
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_example_index
)
if
args
.
local_rank
==
-
1
:
# Run prediction for full data
eval_sampler
=
SequentialSampler
(
eval_data
)
eval_sampler
=
SequentialSampler
(
eval_data
)
else
:
eval_sampler
=
DistributedSampler
(
eval_data
)
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
predict_batch_size
)
eval_dataloader
=
DataLoader
(
eval_data
,
sampler
=
eval_sampler
,
batch_size
=
args
.
predict_batch_size
)
model
.
eval
()
model
.
eval
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment