We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
...
...
@@ -236,6 +237,9 @@ Then take a look at an example:
@@ -749,7 +757,166 @@ Next, rescale the logits to the original image size and apply argmax on the clas
</tf>
</frameworkcontent>
To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values. Then you can combine and plot your image and the predicted segmentation map:
To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values.
```py
defade_palette():
returnnp.asarray([
[0,0,0],
[120,120,120],
[180,120,120],
[6,230,230],
[80,50,50],
[4,200,3],
[120,120,80],
[140,140,140],
[204,5,255],
[230,230,230],
[4,250,7],
[224,5,255],
[235,255,7],
[150,5,61],
[120,120,70],
[8,255,51],
[255,6,82],
[143,255,140],
[204,255,4],
[255,51,7],
[204,70,3],
[0,102,200],
[61,230,250],
[255,6,51],
[11,102,255],
[255,7,71],
[255,9,224],
[9,7,230],
[220,220,220],
[255,9,92],
[112,9,255],
[8,255,214],
[7,255,224],
[255,184,6],
[10,255,71],
[255,41,10],
[7,255,255],
[224,255,8],
[102,8,255],
[255,61,6],
[255,194,7],
[255,122,8],
[0,255,20],
[255,8,41],
[255,5,153],
[6,51,255],
[235,12,255],
[160,150,20],
[0,163,255],
[140,140,140],
[250,10,15],
[20,255,0],
[31,255,0],
[255,31,0],
[255,224,0],
[153,255,0],
[0,0,255],
[255,71,0],
[0,235,255],
[0,173,255],
[31,0,255],
[11,200,200],
[255,82,0],
[0,255,245],
[0,61,255],
[0,255,112],
[0,255,133],
[255,0,0],
[255,163,0],
[255,102,0],
[194,255,0],
[0,143,255],
[51,255,0],
[0,82,255],
[0,255,41],
[0,255,173],
[10,0,255],
[173,255,0],
[0,255,153],
[255,92,0],
[255,0,255],
[255,0,245],
[255,0,102],
[255,173,0],
[255,0,20],
[255,184,184],
[0,31,255],
[0,255,61],
[0,71,255],
[255,0,204],
[0,255,194],
[0,255,82],
[0,10,255],
[0,112,255],
[51,0,255],
[0,194,255],
[0,122,255],
[0,255,163],
[255,153,0],
[0,255,10],
[255,112,0],
[143,255,0],
[82,0,255],
[163,255,0],
[255,235,0],
[8,184,170],
[133,0,255],
[0,255,92],
[184,0,255],
[255,0,31],
[0,184,255],
[0,214,255],
[255,0,112],
[92,255,0],
[0,224,255],
[112,224,255],
[70,184,160],
[163,0,255],
[153,0,255],
[71,255,0],
[255,0,163],
[255,204,0],
[255,0,143],
[0,255,235],
[133,255,0],
[255,0,235],
[245,0,255],
[255,0,122],
[255,245,0],
[10,190,212],
[214,255,0],
[0,204,255],
[20,0,255],
[255,255,0],
[0,153,255],
[0,41,255],
[0,255,204],
[41,0,255],
[41,255,0],
[173,0,255],
[0,245,255],
[71,0,255],
[122,0,255],
[0,255,184],
[0,92,255],
[184,255,0],
[0,133,255],
[255,214,0],
[25,194,194],
[102,255,0],
[92,0,255],
])
```
Then you can combine and plot your image and the predicted segmentation map: