Unverified Commit 207594be authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Convert rst files (#14888)

* Convert all tutorials and guides

* Convert all remaining rst to mdx

* Track and fix bad links
parent b0c7d2ec
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
PhoBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The PhoBERT model was proposed in `PhoBERT: Pre-trained language models for Vietnamese
<https://www.aclweb.org/anthology/2020.findings-emnlp.92.pdf>`__ by Dat Quoc Nguyen, Anh Tuan Nguyen.
The abstract from the paper is the following:
*We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual
language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent
best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple
Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and
Natural language inference.*
Example of use:
.. code-block::
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> phobert = AutoModel.from_pretrained("vinai/phobert-base")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
>>> # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
>>> line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
>>> input_ids = torch.tensor([tokenizer.encode(line)])
>>> with torch.no_grad():
... features = phobert(input_ids) # Models outputs are now tuples
>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
This model was contributed by `dqnguyen <https://huggingface.co/dqnguyen>`__. The original code can be found `here
<https://github.com/VinAIResearch/PhoBERT>`__.
PhobertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PhobertTokenizer
:members:
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ProphetNet
**DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title) and assign
@patrickvonplaten
## Overview
The ProphetNet model was proposed in [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei
Zhang, Ming Zhou on 13 Jan, 2020.
ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of just
the next token.
The abstract from the paper is the following:
*In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel
self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of
the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized by
n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time
step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent
overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale
dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for
abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new
state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.*
The Authors' code can be found [here](https://github.com/microsoft/ProphetNet).
## ProphetNetConfig
[[autodoc]] ProphetNetConfig
## ProphetNetTokenizer
[[autodoc]] ProphetNetTokenizer
## ProphetNet specific outputs
[[autodoc]] models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqLMOutput
[[autodoc]] models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqModelOutput
[[autodoc]] models.prophetnet.modeling_prophetnet.ProphetNetDecoderModelOutput
[[autodoc]] models.prophetnet.modeling_prophetnet.ProphetNetDecoderLMOutput
## ProphetNetModel
[[autodoc]] ProphetNetModel
- forward
## ProphetNetEncoder
[[autodoc]] ProphetNetEncoder
- forward
## ProphetNetDecoder
[[autodoc]] ProphetNetDecoder
- forward
## ProphetNetForConditionalGeneration
[[autodoc]] ProphetNetForConditionalGeneration
- forward
## ProphetNetForCausalLM
[[autodoc]] ProphetNetForCausalLM
- forward
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
ProphetNet
-----------------------------------------------------------------------------------------------------------------------
**DISCLAIMER:** If you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__ and assign
@patrickvonplaten
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ProphetNet model was proposed in `ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,
<https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei
Zhang, Ming Zhou on 13 Jan, 2020.
ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of just
the next token.
The abstract from the paper is the following:
*In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel
self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of
the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized by
n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time
step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent
overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale
dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for
abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new
state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.*
The Authors' code can be found `here <https://github.com/microsoft/ProphetNet>`__.
ProphetNetConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetConfig
:members:
ProphetNetTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetTokenizer
:members:
ProphetNet specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqLMOutput
:members:
.. autoclass:: transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqModelOutput
:members:
.. autoclass:: transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderModelOutput
:members:
.. autoclass:: transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLMOutput
:members:
ProphetNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetModel
:members: forward
ProphetNetEncoder
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetEncoder
:members: forward
ProphetNetDecoder
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetDecoder
:members: forward
ProphetNetForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetForConditionalGeneration
:members: forward
ProphetNetForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ProphetNetForCausalLM
:members: forward
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# QDQBERT
## Overview
The QDQBERT model can be referenced in [Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius
Micikevicius.
The abstract from the paper is the following:
*Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by
taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of
quantization parameters and evaluate their choices on a wide range of neural network models for different application
domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration
by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is
able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are
more difficult to quantize, such as MobileNets and BERT-large.*
Tips:
- QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to (i) linear layer
inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model.
- QDQBERT requires the dependency of [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). To install `pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
- QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example *bert-base-uncased*), and
perform Quantization Aware Training/Post Training Quantization.
- A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for
SQUAD task can be found at [transformers/examples/research_projects/quantization-qdqbert/](examples/research_projects/quantization-qdqbert/).
This model was contributed by [shangz](https://huggingface.co/shangz).
### Set default quantizers
QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to BERT by
`TensorQuantizer` in [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). `TensorQuantizer` is the module
for quantizing tensors, with `QuantDescriptor` defining how the tensor should be quantized. Refer to [Pytorch
Quantization Toolkit userguide](https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html) for more details.
Before creating QDQBERT model, one has to set the default `QuantDescriptor` defining default tensor quantizers.
Example:
```python
>>> import pytorch_quantization.nn as quant_nn
>>> from pytorch_quantization.tensor_quant import QuantDescriptor
>>> # The default tensor quantizer is set to use Max calibration method
>>> input_desc = QuantDescriptor(num_bits=8, calib_method="max")
>>> # The default tensor quantizer is set to be per-channel quantization for weights
>>> weight_desc = QuantDescriptor(num_bits=8, axis=((0,)))
>>> quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
>>> quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
```
### Calibration
Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for
tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model:
```python
>>> # Find the TensorQuantizer and enable calibration
>>> for name, module in model.named_modules():
>>> if name.endswith('_input_quantizer'):
>>> module.enable_calib()
>>> module.disable_quant() # Use full precision data to calibrate
>>> # Feeding data samples
>>> model(x)
>>> # ...
>>> # Finalize calibration
>>> for name, module in model.named_modules():
>>> if name.endswith('_input_quantizer'):
>>> module.load_calib_amax()
>>> module.enable_quant()
>>> # If running on GPU, it needs to call .cuda() again because new tensors will be created by calibration process
>>> model.cuda()
>>> # Keep running the quantized model
>>> # ...
```
### Export to ONNX
The goal of exporting to ONNX is to deploy inference by [TensorRT](https://developer.nvidia.com/tensorrt). Fake
quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting static member of
TensorQuantizer to use Pytorch’s own fake quantization functions, fake quantized model can be exported to ONNX, follow
the instructions in [torch.onnx](https://pytorch.org/docs/stable/onnx.html). Example:
```python
>>> from pytorch_quantization.nn import TensorQuantizer
>>> TensorQuantizer.use_fb_fake_quant = True
>>> # Load the calibrated model
>>> ...
>>> # ONNX export
>>> torch.onnx.export(...)
```
## QDQBertConfig
[[autodoc]] QDQBertConfig
## QDQBertModel
[[autodoc]] QDQBertModel
- forward
## QDQBertLMHeadModel
[[autodoc]] QDQBertLMHeadModel
- forward
## QDQBertForMaskedLM
[[autodoc]] QDQBertForMaskedLM
- forward
## QDQBertForSequenceClassification
[[autodoc]] QDQBertForSequenceClassification
- forward
## QDQBertForNextSentencePrediction
[[autodoc]] QDQBertForNextSentencePrediction
- forward
## QDQBertForMultipleChoice
[[autodoc]] QDQBertForMultipleChoice
- forward
## QDQBertForTokenClassification
[[autodoc]] QDQBertForTokenClassification
- forward
## QDQBertForQuestionAnswering
[[autodoc]] QDQBertForQuestionAnswering
- forward
..
Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
QDQBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The QDQBERT model can be referenced in `Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation <https://arxiv.org/abs/2004.09602>`__ by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius
Micikevicius.
The abstract from the paper is the following:
*Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by
taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of
quantization parameters and evaluate their choices on a wide range of neural network models for different application
domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration
by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is
able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are
more difficult to quantize, such as MobileNets and BERT-large.*
Tips:
- QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to (i) linear layer
inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model.
- QDQBERT requires the dependency of `Pytorch Quantization Toolkit
<https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization>`__. To install ``pip install
pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com``
- QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example *bert-base-uncased*), and
perform Quantization Aware Training/Post Training Quantization.
- A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for
SQUAD task can be found at `transformers/examples/research_projects/quantization-qdqbert/
</examples/research_projects/quantization-qdqbert/>`_.
This model was contributed by `shangz <https://huggingface.co/shangz>`__.
Set default quantizers
_______________________________________________________________________________________________________________________
QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to BERT by
:obj:`TensorQuantizer` in `Pytorch Quantization Toolkit
<https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization>`__. :obj:`TensorQuantizer` is the module
for quantizing tensors, with :obj:`QuantDescriptor` defining how the tensor should be quantized. Refer to `Pytorch
Quantization Toolkit userguide
<https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html>`__ for more details.
Before creating QDQBERT model, one has to set the default :obj:`QuantDescriptor` defining default tensor quantizers.
Example:
.. code-block::
>>> import pytorch_quantization.nn as quant_nn
>>> from pytorch_quantization.tensor_quant import QuantDescriptor
>>> # The default tensor quantizer is set to use Max calibration method
>>> input_desc = QuantDescriptor(num_bits=8, calib_method="max")
>>> # The default tensor quantizer is set to be per-channel quantization for weights
>>> weight_desc = QuantDescriptor(num_bits=8, axis=((0,)))
>>> quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
>>> quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
Calibration
_______________________________________________________________________________________________________________________
Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for
tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model:
.. code-block::
>>> # Find the TensorQuantizer and enable calibration
>>> for name, module in model.named_modules():
>>> if name.endswith('_input_quantizer'):
>>> module.enable_calib()
>>> module.disable_quant() # Use full precision data to calibrate
>>> # Feeding data samples
>>> model(x)
>>> # ...
>>> # Finalize calibration
>>> for name, module in model.named_modules():
>>> if name.endswith('_input_quantizer'):
>>> module.load_calib_amax()
>>> module.enable_quant()
>>> # If running on GPU, it needs to call .cuda() again because new tensors will be created by calibration process
>>> model.cuda()
>>> # Keep running the quantized model
>>> # ...
Export to ONNX
_______________________________________________________________________________________________________________________
The goal of exporting to ONNX is to deploy inference by `TensorRT <https://developer.nvidia.com/tensorrt>`__. Fake
quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting static member of
TensorQuantizer to use Pytorch’s own fake quantization functions, fake quantized model can be exported to ONNX, follow
the instructions in `torch.onnx <https://pytorch.org/docs/stable/onnx.html>`__. Example:
.. code-block::
>>> from pytorch_quantization.nn import TensorQuantizer
>>> TensorQuantizer.use_fb_fake_quant = True
>>> # Load the calibrated model
>>> ...
>>> # ONNX export
>>> torch.onnx.export(...)
QDQBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertConfig
:members:
QDQBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertModel
:members: forward
QDQBertLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertLMHeadModel
:members: forward
QDQBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertForMaskedLM
:members: forward
QDQBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertForSequenceClassification
:members: forward
QDQBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertForNextSentencePrediction
:members: forward
QDQBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertForMultipleChoice
:members: forward
QDQBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertForTokenClassification
:members: forward
QDQBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.QDQBertForQuestionAnswering
:members: forward
..
Copyright 2020 The HuggingFace Team. All rights reserved.
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
RAG
-----------------------------------------------------------------------------------------------------------------------
# RAG
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
Retrieval-augmented generation ("RAG") models combine the powers of pretrained dense retrieval (DPR) and
sequence-to-sequence models. RAG models retrieve documents, pass them to a seq2seq model, then marginalize to generate
outputs. The retriever and seq2seq modules are initialized from pretrained models, and fine-tuned jointly, allowing
both retrieval and generation to adapt to downstream tasks.
It is based on the paper `Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
<https://arxiv.org/abs/2005.11401>`__ by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
It is based on the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
The abstract from the paper is the following:
......@@ -43,76 +40,57 @@ outperforming parametric seq2seq models and task-specific retrieve-and-extract a
tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art
parametric-only seq2seq baseline.*
This model was contributed by `ola13 <https://huggingface.co/ola13>`__.
This model was contributed by [ola13](https://huggingface.co/ola13).
RagConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## RagConfig
.. autoclass:: transformers.RagConfig
:members:
[[autodoc]] RagConfig
## RagTokenizer
RagTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] RagTokenizer
.. autoclass:: transformers.RagTokenizer
:members:
## Rag specific outputs
[[autodoc]] models.rag.modeling_rag.RetrievAugLMMarginOutput
Rag specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] models.rag.modeling_rag.RetrievAugLMOutput
.. autoclass:: transformers.models.rag.modeling_rag.RetrievAugLMMarginOutput
:members:
## RagRetriever
.. autoclass:: transformers.models.rag.modeling_rag.RetrievAugLMOutput
:members:
[[autodoc]] RagRetriever
RagRetriever
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## RagModel
.. autoclass:: transformers.RagRetriever
:members:
[[autodoc]] RagModel
- forward
## RagSequenceForGeneration
RagModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] RagSequenceForGeneration
- forward
- generate
.. autoclass:: transformers.RagModel
:members: forward
## RagTokenForGeneration
[[autodoc]] RagTokenForGeneration
- forward
- generate
RagSequenceForGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## TFRagModel
.. autoclass:: transformers.RagSequenceForGeneration
:members: forward, generate
[[autodoc]] TFRagModel
- call
## TFRagSequenceForGeneration
RagTokenForGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] TFRagSequenceForGeneration
- call
- generate
.. autoclass:: transformers.RagTokenForGeneration
:members: forward, generate
## TFRagTokenForGeneration
TFRagModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRagModel
:members: call
TFRagSequenceForGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRagSequenceForGeneration
:members: call, generate
TFRagTokenForGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRagTokenForGeneration
:members: call, generate
[[autodoc]] TFRagTokenForGeneration
- call
- generate
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Reformer
**DISCLAIMER:** This model is still a work in progress, if you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
## Overview
The Reformer model was proposed in the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451.pdf) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
The abstract from the paper is the following:
*Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can
be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of
Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its
complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual
layers instead of the standard residuals, which allows storing activations only once in the training process instead of
N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be
found [here](https://github.com/google/trax/tree/master/trax/models/reformer).
**Note**:
- Reformer does **not** work with *torch.nn.DataParallel* due to a bug in PyTorch, see [issue #36035](https://github.com/pytorch/pytorch/issues/36035)
## Axial Positional Encodings
Axial Positional Encodings were first implemented in Google's [trax library](https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29)
and developed by the authors of this model's paper. In models that are treating very long input sequences, the
conventional position id encodings store an embedings vector of size \\(d\\) being the `config.hidden_size` for
every position \\(i, \ldots, n_s\\), with \\(n_s\\) being `config.max_embedding_size`. This means that having
a sequence length of \\(n_s = 2^{19} \approx 0.5M\\) and a `config.hidden_size` of \\(d = 2^{10} \approx 1000\\)
would result in a position encoding matrix:
$$X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right]$$
which alone has over 500M parameters to store. Axial positional encodings factorize \\(X_{i,j}\\) into two matrices:
$$X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right]$$
and
$$X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right]$$
with:
$$d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .$$
Therefore the following holds:
$$X_{i,j} = \begin{cases}
X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\
X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor
\end{cases}$$
Intuitively, this means that a position embedding vector \\(x_j \in \mathbb{R}^{d}\\) is now the composition of two
factorized embedding vectors: \\(x^1_{k, l} + x^2_{l, k}\\), where as the `config.max_embedding_size` dimension
\\(j\\) is factorized into \\(k \text{ and } l\\). This design ensures that each position embedding vector
\\(x_j\\) is unique.
Using the above example again, axial position encoding with \\(d^1 = 2^5, d^2 = 2^5, n_s^1 = 2^9, n_s^2 = 2^{10}\\)
can drastically reduced the number of parameters to \\(2^{14} + 2^{15} \approx 49000\\) parameters.
In practice, the parameter `config.axial_pos_embds_dim` is set to a tuple \\((d^1, d^2)\\) which sum has to be
equal to `config.hidden_size` and `config.axial_pos_shape` is set to a tuple \\((n_s^1, n_s^2)\\) which
product has to be equal to `config.max_embedding_size`, which during training has to be equal to the *sequence
length* of the `input_ids`.
## LSH Self Attention
In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key
query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in
[Practical and Optimal LSH for Angular Distance](https://arxiv.org/abs/1509.02897) to assign each of the tied key
query embedding vectors to one of `config.num_buckets` possible buckets. The premise is that the more "similar"
key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to
the same bucket.
The accuracy of the LSH mechanism can be improved by increasing `config.num_hashes` or directly the argument
`num_hashes` of the forward function so that the output of the LSH self attention better approximates the output
of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks
each of length `config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors
(which are tied to themselves) and to the key embedding vectors of `config.lsh_num_chunks_before` previous
neighboring chunks and `config.lsh_num_chunks_after` following neighboring chunks.
For more information, see the [original Paper](https://arxiv.org/abs/2001.04451) or this great [blog post](https://www.pragmatic.ml/reformer-deep-dive/).
Note that `config.num_buckets` can also be factorized into a list \\((n_{\text{buckets}}^1,
n_{\text{buckets}}^2)\\). This way instead of assigning the query key embedding vectors to one of \\((1,\ldots,
n_{\text{buckets}})\\) they are assigned to one of \\((1-1,\ldots, n_{\text{buckets}}^1-1, \ldots,
1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)\\). This is crucial for very long sequences to
save memory.
When training a model from scratch, it is recommended to leave `config.num_buckets=None`, so that depending on the
sequence length a good value for `num_buckets` is calculated on the fly. This value will then automatically be
saved in the config and should be reused for inference.
Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from
\\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory
and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length.
## Local Self Attention
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
chunked so that in each chunk of length `config.local_chunk_length` the query embedding vectors only attends to
the key embedding vectors in its chunk and to the key embedding vectors of `config.local_num_chunks_before`
previous neighboring chunks and `config.local_num_chunks_after` following neighboring chunks.
Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
\\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory
and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length.
## Training
During training, we must ensure that the sequence length is set to a value that can be divided by the least common
multiple of `config.lsh_chunk_length` and `config.local_chunk_length` and that the parameters of the Axial
Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can
easily be trained on sequences as long as 64000 tokens.
For training, the [`ReformerModelWithLMHead`] should be used as follows:
```python
input_ids = tokenizer.encode('This is a sentence from the training data', return_tensors='pt')
loss = model(input_ids, labels=input_ids)[0]
```
## ReformerConfig
[[autodoc]] ReformerConfig
## ReformerTokenizer
[[autodoc]] ReformerTokenizer
- save_vocabulary
## ReformerTokenizerFast
[[autodoc]] ReformerTokenizerFast
## ReformerModel
[[autodoc]] ReformerModel
- forward
## ReformerModelWithLMHead
[[autodoc]] ReformerModelWithLMHead
- forward
## ReformerForMaskedLM
[[autodoc]] ReformerForMaskedLM
- forward
## ReformerForSequenceClassification
[[autodoc]] ReformerForSequenceClassification
- forward
## ReformerForQuestionAnswering
[[autodoc]] ReformerForQuestionAnswering
- forward
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Reformer
-----------------------------------------------------------------------------------------------------------------------
**DISCLAIMER:** This model is still a work in progress, if you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__.
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Reformer model was proposed in the paper `Reformer: The Efficient Transformer
<https://arxiv.org/abs/2001.04451.pdf>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
The abstract from the paper is the following:
*Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can
be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of
Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its
complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual
layers instead of the standard residuals, which allows storing activations only once in the training process instead of
N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.*
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__. The Authors' code can be
found `here <https://github.com/google/trax/tree/master/trax/models/reformer>`__.
**Note**:
- Reformer does **not** work with `torch.nn.DataParallel` due to a bug in PyTorch, see `issue #36035
<https://github.com/pytorch/pytorch/issues/36035>`__
Axial Positional Encodings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Axial Positional Encodings were first implemented in Google's `trax library
<https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29>`__
and developed by the authors of this model's paper. In models that are treating very long input sequences, the
conventional position id encodings store an embedings vector of size :math:`d` being the :obj:`config.hidden_size` for
every position :math:`i, \ldots, n_s`, with :math:`n_s` being :obj:`config.max_embedding_size`. This means that having
a sequence length of :math:`n_s = 2^{19} \approx 0.5M` and a ``config.hidden_size`` of :math:`d = 2^{10} \approx 1000`
would result in a position encoding matrix:
.. math::
X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right]
which alone has over 500M parameters to store. Axial positional encodings factorize :math:`X_{i,j}` into two matrices:
.. math::
X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right]
and
.. math::
X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right]
with:
.. math::
d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .
Therefore the following holds:
.. math::
X_{i,j} = \begin{cases}
X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\
X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor
\end{cases}
Intuitively, this means that a position embedding vector :math:`x_j \in \mathbb{R}^{d}` is now the composition of two
factorized embedding vectors: :math:`x^1_{k, l} + x^2_{l, k}`, where as the :obj:`config.max_embedding_size` dimension
:math:`j` is factorized into :math:`k \text{ and } l`. This design ensures that each position embedding vector
:math:`x_j` is unique.
Using the above example again, axial position encoding with :math:`d^1 = 2^5, d^2 = 2^5, n_s^1 = 2^9, n_s^2 = 2^{10}`
can drastically reduced the number of parameters to :math:`2^{14} + 2^{15} \approx 49000` parameters.
In practice, the parameter :obj:`config.axial_pos_embds_dim` is set to a tuple :math:`(d^1, d^2)` which sum has to be
equal to :obj:`config.hidden_size` and :obj:`config.axial_pos_shape` is set to a tuple :math:`(n_s^1, n_s^2)` which
product has to be equal to :obj:`config.max_embedding_size`, which during training has to be equal to the `sequence
length` of the :obj:`input_ids`.
LSH Self Attention
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key
query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in
`Practical and Optimal LSH for Angular Distance <https://arxiv.org/abs/1509.02897>`__ to assign each of the tied key
query embedding vectors to one of :obj:`config.num_buckets` possible buckets. The premise is that the more "similar"
key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to
the same bucket.
The accuracy of the LSH mechanism can be improved by increasing :obj:`config.num_hashes` or directly the argument
:obj:`num_hashes` of the forward function so that the output of the LSH self attention better approximates the output
of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks
each of length :obj:`config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors
(which are tied to themselves) and to the key embedding vectors of :obj:`config.lsh_num_chunks_before` previous
neighboring chunks and :obj:`config.lsh_num_chunks_after` following neighboring chunks.
For more information, see the `original Paper <https://arxiv.org/abs/2001.04451>`__ or this great `blog post
<https://www.pragmatic.ml/reformer-deep-dive/>`__.
Note that :obj:`config.num_buckets` can also be factorized into a list :math:`(n_{\text{buckets}}^1,
n_{\text{buckets}}^2)`. This way instead of assigning the query key embedding vectors to one of :math:`(1,\ldots,
n_{\text{buckets}})` they are assigned to one of :math:`(1-1,\ldots, n_{\text{buckets}}^1-1, \ldots,
1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)`. This is crucial for very long sequences to
save memory.
When training a model from scratch, it is recommended to leave :obj:`config.num_buckets=None`, so that depending on the
sequence length a good value for :obj:`num_buckets` is calculated on the fly. This value will then automatically be
saved in the config and should be reused for inference.
Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from
:math:`\mathcal{O}(n_s \times n_s)` to :math:`\mathcal{O}(n_s \times \log(n_s))`, which usually represents the memory
and time bottleneck in a transformer model, with :math:`n_s` being the sequence length.
Local Self Attention
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is
chunked so that in each chunk of length :obj:`config.local_chunk_length` the query embedding vectors only attends to
the key embedding vectors in its chunk and to the key embedding vectors of :obj:`config.local_num_chunks_before`
previous neighboring chunks and :obj:`config.local_num_chunks_after` following neighboring chunks.
Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from
:math:`\mathcal{O}(n_s \times n_s)` to :math:`\mathcal{O}(n_s \times \log(n_s))`, which usually represents the memory
and time bottleneck in a transformer model, with :math:`n_s` being the sequence length.
Training
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During training, we must ensure that the sequence length is set to a value that can be divided by the least common
multiple of :obj:`config.lsh_chunk_length` and :obj:`config.local_chunk_length` and that the parameters of the Axial
Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can
easily be trained on sequences as long as 64000 tokens.
For training, the :class:`~transformers.ReformerModelWithLMHead` should be used as follows:
.. code-block::
input_ids = tokenizer.encode('This is a sentence from the training data', return_tensors='pt')
loss = model(input_ids, labels=input_ids)[0]
ReformerConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerConfig
:members:
ReformerTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerTokenizer
:members: save_vocabulary
ReformerTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerTokenizerFast
:members:
ReformerModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerModel
:members: forward
ReformerModelWithLMHead
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerModelWithLMHead
:members: forward
ReformerForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerForMaskedLM
:members: forward
ReformerForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerForSequenceClassification
:members: forward
ReformerForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.ReformerForQuestionAnswering
:members: forward
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RemBERT
## Overview
The RemBERT model was proposed in [Rethinking Embedding Coupling in Pre-trained Language Models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, Sebastian Ruder.
The abstract from the paper is the following:
*We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art
pre-trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us to
significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By
reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on
standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show that
allocating additional capacity to the output embedding provides benefits to the model that persist through the
fine-tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger
output embeddings prevent the model's last layers from overspecializing to the pre-training task and encourage
Transformer representations to be more general and more transferable to other tasks and languages. Harnessing these
findings, we are able to train models that achieve strong performance on the XTREME benchmark without increasing the
number of parameters at the fine-tuning stage.*
Tips:
For fine-tuning, RemBERT can be thought of as a bigger version of mBERT with an ALBERT-like factorization of the
embedding layer. The embeddings are not tied in pre-training, in contrast with BERT, which enables smaller input
embeddings (preserved during fine-tuning) and bigger output embeddings (discarded at fine-tuning). The tokenizer is
also similar to the Albert one rather than the BERT one.
## RemBertConfig
[[autodoc]] RemBertConfig
## RemBertTokenizer
[[autodoc]] RemBertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## RemBertTokenizerFast
[[autodoc]] RemBertTokenizerFast
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## RemBertModel
[[autodoc]] RemBertModel
- forward
## RemBertForCausalLM
[[autodoc]] RemBertForCausalLM
- forward
## RemBertForMaskedLM
[[autodoc]] RemBertForMaskedLM
- forward
## RemBertForSequenceClassification
[[autodoc]] RemBertForSequenceClassification
- forward
## RemBertForMultipleChoice
[[autodoc]] RemBertForMultipleChoice
- forward
## RemBertForTokenClassification
[[autodoc]] RemBertForTokenClassification
- forward
## RemBertForQuestionAnswering
[[autodoc]] RemBertForQuestionAnswering
- forward
## TFRemBertModel
[[autodoc]] TFRemBertModel
- call
## TFRemBertForMaskedLM
[[autodoc]] TFRemBertForMaskedLM
- call
## TFRemBertForCausalLM
[[autodoc]] TFRemBertForCausalLM
- call
## TFRemBertForSequenceClassification
[[autodoc]] TFRemBertForSequenceClassification
- call
## TFRemBertForMultipleChoice
[[autodoc]] TFRemBertForMultipleChoice
- call
## TFRemBertForTokenClassification
[[autodoc]] TFRemBertForTokenClassification
- call
## TFRemBertForQuestionAnswering
[[autodoc]] TFRemBertForQuestionAnswering
- call
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
RemBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RemBERT model was proposed in `Rethinking Embedding Coupling in Pre-trained Language Models
<https://arxiv.org/abs/2010.12821>`__ by Hyung Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, Sebastian Ruder.
The abstract from the paper is the following:
*We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art
pre-trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us to
significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By
reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on
standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show that
allocating additional capacity to the output embedding provides benefits to the model that persist through the
fine-tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger
output embeddings prevent the model's last layers from overspecializing to the pre-training task and encourage
Transformer representations to be more general and more transferable to other tasks and languages. Harnessing these
findings, we are able to train models that achieve strong performance on the XTREME benchmark without increasing the
number of parameters at the fine-tuning stage.*
Tips:
For fine-tuning, RemBERT can be thought of as a bigger version of mBERT with an ALBERT-like factorization of the
embedding layer. The embeddings are not tied in pre-training, in contrast with BERT, which enables smaller input
embeddings (preserved during fine-tuning) and bigger output embeddings (discarded at fine-tuning). The tokenizer is
also similar to the Albert one rather than the BERT one.
RemBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertConfig
:members:
RemBertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
RemBertTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertTokenizerFast
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
RemBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertModel
:members: forward
RemBertForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertForCausalLM
:members: forward
RemBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertForMaskedLM
:members: forward
RemBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertForSequenceClassification
:members: forward
RemBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertForMultipleChoice
:members: forward
RemBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertForTokenClassification
:members: forward
RemBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RemBertForQuestionAnswering
:members: forward
TFRemBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertModel
:members: call
TFRemBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertForMaskedLM
:members: call
TFRemBertForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertForCausalLM
:members: call
TFRemBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertForSequenceClassification
:members: call
TFRemBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertForMultipleChoice
:members: call
TFRemBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertForTokenClassification
:members: call
TFRemBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRemBertForQuestionAnswering
:members: call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RetriBERT
## Overview
The RetriBERT model was proposed in the blog post [Explain Anything Like I'm Five: A Model for Open Domain Long Form
Question Answering](https://yjernite.github.io/lfqa.html). RetriBERT is a small model that uses either a single or
pair of BERT encoders with lower-dimension projection for dense semantic indexing of text.
This model was contributed by [yjernite](https://huggingface.co/yjernite). Code to train and use the model can be
found [here](https://github.com/huggingface/transformers/tree/master/examples/research-projects/distillation).
## RetriBertConfig
[[autodoc]] RetriBertConfig
## RetriBertTokenizer
[[autodoc]] RetriBertTokenizer
## RetriBertTokenizerFast
[[autodoc]] RetriBertTokenizerFast
## RetriBertModel
[[autodoc]] RetriBertModel
- forward
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
RetriBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RetriBERT model was proposed in the blog post `Explain Anything Like I'm Five: A Model for Open Domain Long Form
Question Answering <https://yjernite.github.io/lfqa.html>`__. RetriBERT is a small model that uses either a single or
pair of BERT encoders with lower-dimension projection for dense semantic indexing of text.
This model was contributed by `yjernite <https://huggingface.co/yjernite>`__. Code to train and use the model can be
found :prefix_link:`here <examples/research-projects/distillation>`.
RetriBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RetriBertConfig
:members:
RetriBertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RetriBertTokenizer
:members:
RetriBertTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RetriBertTokenizerFast
:members:
RetriBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RetriBertModel
:members: forward
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RoBERTa
## Overview
The RoBERTa model was proposed in [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018.
It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with
much larger mini-batches and learning rates.
The abstract from the paper is the following:
*Language model pretraining has led to significant performance gains but careful comparison between different
approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes,
and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication
study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and
training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every
model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results
highlight the importance of previously overlooked design choices, and raise questions about the source of recently
reported improvements. We release our models and code.*
Tips:
- This implementation is the same as [`BertModel`] with a tiny embeddings tweak as well as a setup
for Roberta pretrained models.
- RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a
different pretraining scheme.
- RoBERTa doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token `tokenizer.sep_token` (or `</s>`)
- [CamemBERT](camembert) is a wrapper around RoBERTa. Refer to this page for usage examples.
This model was contributed by [julien-c](https://huggingface.co/julien-c). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/roberta).
## RobertaConfig
[[autodoc]] RobertaConfig
## RobertaTokenizer
[[autodoc]] RobertaTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## RobertaTokenizerFast
[[autodoc]] RobertaTokenizerFast
- build_inputs_with_special_tokens
## RobertaModel
[[autodoc]] RobertaModel
- forward
## RobertaForCausalLM
[[autodoc]] RobertaForCausalLM
- forward
## RobertaForMaskedLM
[[autodoc]] RobertaForMaskedLM
- forward
## RobertaForSequenceClassification
[[autodoc]] RobertaForSequenceClassification
- forward
## RobertaForMultipleChoice
[[autodoc]] RobertaForMultipleChoice
- forward
## RobertaForTokenClassification
[[autodoc]] RobertaForTokenClassification
- forward
## RobertaForQuestionAnswering
[[autodoc]] RobertaForQuestionAnswering
- forward
## TFRobertaModel
[[autodoc]] TFRobertaModel
- call
## TFRobertaForCausalLM
[[autodoc]] TFRobertaForCausalLM
- call
## TFRobertaForMaskedLM
[[autodoc]] TFRobertaForMaskedLM
- call
## TFRobertaForSequenceClassification
[[autodoc]] TFRobertaForSequenceClassification
- call
## TFRobertaForMultipleChoice
[[autodoc]] TFRobertaForMultipleChoice
- call
## TFRobertaForTokenClassification
[[autodoc]] TFRobertaForTokenClassification
- call
## TFRobertaForQuestionAnswering
[[autodoc]] TFRobertaForQuestionAnswering
- call
## FlaxRobertaModel
[[autodoc]] FlaxRobertaModel
- __call__
## FlaxRobertaForMaskedLM
[[autodoc]] FlaxRobertaForMaskedLM
- __call__
## FlaxRobertaForSequenceClassification
[[autodoc]] FlaxRobertaForSequenceClassification
- __call__
## FlaxRobertaForMultipleChoice
[[autodoc]] FlaxRobertaForMultipleChoice
- __call__
## FlaxRobertaForTokenClassification
[[autodoc]] FlaxRobertaForTokenClassification
- __call__
## FlaxRobertaForQuestionAnswering
[[autodoc]] FlaxRobertaForQuestionAnswering
- __call__
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
RoBERTa
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RoBERTa model was proposed in `RoBERTa: A Robustly Optimized BERT Pretraining Approach
<https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018.
It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with
much larger mini-batches and learning rates.
The abstract from the paper is the following:
*Language model pretraining has led to significant performance gains but careful comparison between different
approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes,
and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication
study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and
training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every
model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results
highlight the importance of previously overlooked design choices, and raise questions about the source of recently
reported improvements. We release our models and code.*
Tips:
- This implementation is the same as :class:`~transformers.BertModel` with a tiny embeddings tweak as well as a setup
for Roberta pretrained models.
- RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a
different pretraining scheme.
- RoBERTa doesn't have :obj:`token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token :obj:`tokenizer.sep_token` (or :obj:`</s>`)
- :doc:`CamemBERT <camembert>` is a wrapper around RoBERTa. Refer to this page for usage examples.
This model was contributed by `julien-c <https://huggingface.co/julien-c>`__. The original code can be found `here
<https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_.
RobertaConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaConfig
:members:
RobertaTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
RobertaTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaTokenizerFast
:members: build_inputs_with_special_tokens
RobertaModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaModel
:members: forward
RobertaForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForCausalLM
:members: forward
RobertaForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForMaskedLM
:members: forward
RobertaForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForSequenceClassification
:members: forward
RobertaForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForMultipleChoice
:members: forward
RobertaForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForTokenClassification
:members: forward
RobertaForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RobertaForQuestionAnswering
:members: forward
TFRobertaModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaModel
:members: call
TFRobertaForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForCausalLM
:members: call
TFRobertaForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForMaskedLM
:members: call
TFRobertaForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForSequenceClassification
:members: call
TFRobertaForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForMultipleChoice
:members: call
TFRobertaForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForTokenClassification
:members: call
TFRobertaForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRobertaForQuestionAnswering
:members: call
FlaxRobertaModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxRobertaModel
:members: __call__
FlaxRobertaForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxRobertaForMaskedLM
:members: __call__
FlaxRobertaForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxRobertaForSequenceClassification
:members: __call__
FlaxRobertaForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxRobertaForMultipleChoice
:members: __call__
FlaxRobertaForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxRobertaForTokenClassification
:members: __call__
FlaxRobertaForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxRobertaForQuestionAnswering
:members: __call__
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RoFormer
## Overview
The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
The abstract from the paper is the following:
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
different positions in the sequence. We investigate various methods to encode positional information in
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
experiment for English benchmark will soon be updated.*
Tips:
- RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
improved performance on classification tasks with long texts.
This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).
## RoFormerConfig
[[autodoc]] RoFormerConfig
## RoFormerTokenizer
[[autodoc]] RoFormerTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## RoFormerTokenizerFast
[[autodoc]] RoFormerTokenizerFast
- build_inputs_with_special_tokens
## RoFormerModel
[[autodoc]] RoFormerModel
- forward
## RoFormerForCausalLM
[[autodoc]] RoFormerForCausalLM
- forward
## RoFormerForMaskedLM
[[autodoc]] RoFormerForMaskedLM
- forward
## RoFormerForSequenceClassification
[[autodoc]] RoFormerForSequenceClassification
- forward
## RoFormerForMultipleChoice
[[autodoc]] RoFormerForMultipleChoice
- forward
## RoFormerForTokenClassification
[[autodoc]] RoFormerForTokenClassification
- forward
## RoFormerForQuestionAnswering
[[autodoc]] RoFormerForQuestionAnswering
- forward
## TFRoFormerModel
[[autodoc]] TFRoFormerModel
- call
## TFRoFormerForMaskedLM
[[autodoc]] TFRoFormerForMaskedLM
- call
## TFRoFormerForCausalLM
[[autodoc]] TFRoFormerForCausalLM
- call
## TFRoFormerForSequenceClassification
[[autodoc]] TFRoFormerForSequenceClassification
- call
## TFRoFormerForMultipleChoice
[[autodoc]] TFRoFormerForMultipleChoice
- call
## TFRoFormerForTokenClassification
[[autodoc]] TFRoFormerForTokenClassification
- call
## TFRoFormerForQuestionAnswering
[[autodoc]] TFRoFormerForQuestionAnswering
- call
..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
RoFormer
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RoFormer model was proposed in `RoFormer: Enhanced Transformer with Rotary Position Embedding
<https://arxiv.org/pdf/2104.09864v1.pdf>`__ by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
The abstract from the paper is the following:
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
different positions in the sequence. We investigate various methods to encode positional information in
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
experiment for English benchmark will soon be updated.*
Tips:
- RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
improved performance on classification tasks with long texts.
This model was contributed by `junnyu <https://huggingface.co/junnyu>`__. The original code can be found `here
<https://github.com/ZhuiyiTechnology/roformer>`__.
RoFormerConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerConfig
:members:
RoFormerTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
RoFormerTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerTokenizerFast
:members: build_inputs_with_special_tokens
RoFormerModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerModel
:members: forward
RoFormerForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerForCausalLM
:members: forward
RoFormerForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerForMaskedLM
:members: forward
RoFormerForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerForSequenceClassification
:members: forward
RoFormerForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerForMultipleChoice
:members: forward
RoFormerForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerForTokenClassification
:members: forward
RoFormerForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.RoFormerForQuestionAnswering
:members: forward
TFRoFormerModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerModel
:members: call
TFRoFormerForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerForMaskedLM
:members: call
TFRoFormerForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerForCausalLM
:members: call
TFRoFormerForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerForSequenceClassification
:members: call
TFRoFormerForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerForMultipleChoice
:members: call
TFRoFormerForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerForTokenClassification
:members: call
TFRoFormerForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFRoFormerForQuestionAnswering
:members: call
..
Copyright 2021 The HuggingFace Team. All rights reserved.
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
SegFormer
-----------------------------------------------------------------------------------------------------------------------
# SegFormer
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
The SegFormer model was proposed in `SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
<https://arxiv.org/abs/2105.15203>`__ by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping
The SegFormer model was proposed in [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping
Luo. The model consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great
results on image segmentation benchmarks such as ADE20K and Cityscapes.
......@@ -35,98 +32,73 @@ and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50
being 5x smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on
Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C.*
The figure below illustrates the architecture of SegFormer. Taken from the `original paper
<https://arxiv.org/abs/2105.15203>`__.
The figure below illustrates the architecture of SegFormer. Taken from the [original paper](https://arxiv.org/abs/2105.15203).
.. image:: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/segformer_architecture.png
:width: 600
<img width="600" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/segformer_architecture.png"/>
This model was contributed by `nielsr <https://huggingface.co/nielsr>`__. The original code can be found `here
<https://github.com/NVlabs/SegFormer>`__.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/NVlabs/SegFormer).
Tips:
- SegFormer consists of a hierarchical Transformer encoder, and a lightweight all-MLP decode head.
:class:`~transformers.SegformerModel` is the hierarchical Transformer encoder (which in the paper is also referred to
as Mix Transformer or MiT). :class:`~transformers.SegformerForSemanticSegmentation` adds the all-MLP decode head on
[`SegformerModel`] is the hierarchical Transformer encoder (which in the paper is also referred to
as Mix Transformer or MiT). [`SegformerForSemanticSegmentation`] adds the all-MLP decode head on
top to perform semantic segmentation of images. In addition, there's
:class:`~transformers.SegformerForImageClassification` which can be used to - you guessed it - classify images. The
[`SegformerForImageClassification`] which can be used to - you guessed it - classify images. The
authors of SegFormer first pre-trained the Transformer encoder on ImageNet-1k to classify images. Next, they throw
away the classification head, and replace it by the all-MLP decode head. Next, they fine-tune the model altogether on
ADE20K, Cityscapes and COCO-stuff, which are important benchmarks for semantic segmentation. All checkpoints can be
found on the `hub <https://huggingface.co/models?other=segformer>`__.
- The quickest way to get started with SegFormer is by checking the `example notebooks
<https://github.com/NielsRogge/Transformers-Tutorials/tree/master/SegFormer>`__ (which showcase both inference and
found on the [hub](https://huggingface.co/models?other=segformer).
- The quickest way to get started with SegFormer is by checking the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/SegFormer) (which showcase both inference and
fine-tuning on custom data).
- One can use :class:`~transformers.SegformerFeatureExtractor` to prepare images and corresponding segmentation maps
- One can use [`SegformerFeatureExtractor`] to prepare images and corresponding segmentation maps
for the model. Note that this feature extractor is fairly basic and does not include all data augmentations used in
the original paper. The original preprocessing pipelines (for the ADE20k dataset for instance) can be found `here
<https://github.com/NVlabs/SegFormer/blob/master/local_configs/_base_/datasets/ade20k_repeat.py>`__. The most
the original paper. The original preprocessing pipelines (for the ADE20k dataset for instance) can be found [here](https://github.com/NVlabs/SegFormer/blob/master/local_configs/_base_/datasets/ade20k_repeat.py). The most
important preprocessing step is that images and segmentation maps are randomly cropped and padded to the same size,
such as 512x512 or 640x640, after which they are normalized.
- One additional thing to keep in mind is that one can initialize :class:`~transformers.SegformerFeatureExtractor` with
:obj:`reduce_labels` set to `True` or `False`. In some datasets (like ADE20k), the 0 index is used in the annotated
- One additional thing to keep in mind is that one can initialize [`SegformerFeatureExtractor`] with
`reduce_labels` set to *True* or *False*. In some datasets (like ADE20k), the 0 index is used in the annotated
segmentation maps for background. However, ADE20k doesn't include the "background" class in its 150 labels.
Therefore, :obj:`reduce_labels` is used to reduce all labels by 1, and to make sure no loss is computed for the
background class (i.e. it replaces 0 in the annotated maps by 255, which is the `ignore_index` of the loss function
used by :class:`~transformers.SegformerForSemanticSegmentation`). However, other datasets use the 0 index as
background class and include this class as part of all labels. In that case, :obj:`reduce_labels` should be set to
`False`, as loss should also be computed for the background class.
Therefore, `reduce_labels` is used to reduce all labels by 1, and to make sure no loss is computed for the
background class (i.e. it replaces 0 in the annotated maps by 255, which is the *ignore_index* of the loss function
used by [`SegformerForSemanticSegmentation`]). However, other datasets use the 0 index as
background class and include this class as part of all labels. In that case, `reduce_labels` should be set to
*False*, as loss should also be computed for the background class.
- As most models, SegFormer comes in different sizes, the details of which can be found in the table below.
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| **Model variant** | **Depths** | **Hidden sizes** | **Decoder hidden size** | **Params (M)** | **ImageNet-1k Top 1** |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| MiT-b0 | [2, 2, 2, 2] | [32, 64, 160, 256] | 256 | 3.7 | 70.5 |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| MiT-b1 | [2, 2, 2, 2] | [64, 128, 320, 512] | 256 | 14.0 | 78.7 |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| MiT-b2 | [3, 4, 6, 3] | [64, 128, 320, 512] | 768 | 25.4 | 81.6 |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| MiT-b3 | [3, 4, 18, 3] | [64, 128, 320, 512] | 768 | 45.2 | 83.1 |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| MiT-b4 | [3, 8, 27, 3] | [64, 128, 320, 512] | 768 | 62.6 | 83.6 |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
| MiT-b5 | [3, 6, 40, 3] | [64, 128, 320, 512] | 768 | 82.0 | 83.8 |
+-------------------+---------------+---------------------+-------------------------+----------------+-----------------------+
SegformerConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## SegformerConfig
.. autoclass:: transformers.SegformerConfig
:members:
[[autodoc]] SegformerConfig
## SegformerFeatureExtractor
SegformerFeatureExtractor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] SegformerFeatureExtractor
- __call__
.. autoclass:: transformers.SegformerFeatureExtractor
:members: __call__
## SegformerModel
[[autodoc]] SegformerModel
- forward
SegformerModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## SegformerDecodeHead
.. autoclass:: transformers.SegformerModel
:members: forward
[[autodoc]] SegformerDecodeHead
- forward
## SegformerForImageClassification
SegformerDecodeHead
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] SegformerForImageClassification
- forward
.. autoclass:: transformers.SegformerDecodeHead
:members: forward
## SegformerForSemanticSegmentation
SegformerForImageClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SegformerForImageClassification
:members: forward
SegformerForSemanticSegmentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SegformerForSemanticSegmentation
:members: forward
[[autodoc]] SegformerForSemanticSegmentation
- forward
..
Copyright 2021 The HuggingFace Team. All rights reserved.
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
SEW
-----------------------------------------------------------------------------------------------------------------------
# SEW
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
SEW (Squeezed and Efficient Wav2Vec) was proposed in `Performance-Efficiency Trade-offs in Unsupervised Pre-training
for Speech Recognition <https://arxiv.org/abs/2109.06870>`__ by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q.
SEW (Squeezed and Efficient Wav2Vec) was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training
for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q.
Weinberger, Yoav Artzi.
The abstract from the paper is the following:
......@@ -34,34 +32,26 @@ Tips:
- SEW is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- SEWForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using
:class:`~transformers.Wav2Vec2CTCTokenizer`.
[`Wav2Vec2CTCTokenizer`].
This model was contributed by `anton-l <https://huggingface.co/anton-l>`__.
This model was contributed by [anton-l](https://huggingface.co/anton-l).
SEWConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## SEWConfig
.. autoclass:: transformers.SEWConfig
:members:
[[autodoc]] SEWConfig
## SEWModel
SEWModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] SEWModel
- forward
.. autoclass:: transformers.SEWModel
:members: forward
## SEWForCTC
[[autodoc]] SEWForCTC
- forward
SEWForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## SEWForSequenceClassification
.. autoclass:: transformers.SEWForCTC
:members: forward
SEWForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SEWForSequenceClassification
:members: forward
[[autodoc]] SEWForSequenceClassification
- forward
..
Copyright 2021 The HuggingFace Team. All rights reserved.
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
SEW-D
-----------------------------------------------------------------------------------------------------------------------
# SEW-D
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
SEW-D (Squeezed and Efficient Wav2Vec with Disentangled attention) was proposed in `Performance-Efficiency Trade-offs
in Unsupervised Pre-training for Speech Recognition <https://arxiv.org/abs/2109.06870>`__ by Felix Wu, Kwangyoun Kim,
SEW-D (Squeezed and Efficient Wav2Vec with Disentangled attention) was proposed in [Performance-Efficiency Trade-offs
in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim,
Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
The abstract from the paper is the following:
......@@ -34,33 +32,26 @@ Tips:
- SEW-D is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- SEWDForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded
using :class:`~transformers.Wav2Vec2CTCTokenizer`.
using [`Wav2Vec2CTCTokenizer`].
This model was contributed by `anton-l <https://huggingface.co/anton-l>`__.
This model was contributed by [anton-l](https://huggingface.co/anton-l).
SEWDConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## SEWDConfig
.. autoclass:: transformers.SEWDConfig
:members:
[[autodoc]] SEWDConfig
## SEWDModel
SEWDModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] SEWDModel
- forward
.. autoclass:: transformers.SEWDModel
:members: forward
## SEWDForCTC
[[autodoc]] SEWDForCTC
- forward
SEWDForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## SEWDForSequenceClassification
.. autoclass:: transformers.SEWDForCTC
:members: forward
SEWDForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.SEWDForSequenceClassification
:members: forward
[[autodoc]] SEWDForSequenceClassification
- forward
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Speech2Text
## Overview
The Speech2Text model was proposed in [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. It's a
transformer-based seq2seq (encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech
Translation (ST). It uses a convolutional downsampler to reduce the length of speech inputs by 3/4th before they are
fed into the encoder. The model is trained with standard autoregressive cross-entropy loss and generates the
transcripts/translations autoregressively. Speech2Text has been fine-tuned on several datasets for ASR and ST:
[LibriSpeech](http://www.openslr.org/12), [CoVoST 2](https://github.com/facebookresearch/covost), [MuST-C](https://ict.fbk.eu/must-c/).
This model was contributed by [valhalla](https://huggingface.co/valhalla). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text).
## Inference
Speech2Text is a speech model that accepts a float tensor of log-mel filter-bank features extracted from the speech
signal. It's a transformer-based seq2seq model, so the transcripts/translations are generated autoregressively. The
`generate()` method can be used for inference.
The [`Speech2TextFeatureExtractor`] class is responsible for extracting the log-mel filter-bank
features. The [`Speech2TextProcessor`] wraps [`Speech2TextFeatureExtractor`] and
[`Speech2TextTokenizer`] into a single instance to both extract the input features and decode the
predicted token ids.
The feature extractor depends on `torchaudio` and the tokenizer depends on `sentencepiece` so be sure to
install those packages before running the examples. You could either install those as extra speech dependencies with
`pip install transformers"[speech, sentencepiece]"` or install the packages seperately with `pip install torchaudio sentencepiece`. Also `torchaudio` requires the development version of the [libsndfile](http://www.mega-nerd.com/libsndfile/) package which can be installed via a system package manager. On Ubuntu it can
be installed as follows: `apt install libsndfile1-dev`
- ASR and Speech Translation
```python
>>> import torch
>>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> inputs = processor(ds["speech"][0], sampling_rate=16_000, return_tensors="pt")
>>> generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"])
>>> transcription = processor.batch_decode(generated_ids)
```
- Multilingual speech translation
For multilingual speech translation models, `eos_token_id` is used as the `decoder_start_token_id` and
the target language id is forced as the first generated token. To force the target language id as the first
generated token, pass the `forced_bos_token_id` parameter to the `generate()` method. The following
example shows how to transate English speech to French text using the *facebook/s2t-medium-mustc-multilingual-st*
checkpoint.
```python
>>> import torch
>>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-mustc-multilingual-st")
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-mustc-multilingual-st")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> inputs = processor(ds["speech"][0], sampling_rate=16_000, return_tensors="pt")
>>> generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask], forced_bos_token_id=processor.tokenizer.lang_code_to_id["fr"])
>>> translation = processor.batch_decode(generated_ids)
```
See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for Speech2Text checkpoints.
## Speech2TextConfig
[[autodoc]] Speech2TextConfig
## Speech2TextTokenizer
[[autodoc]] Speech2TextTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## Speech2TextFeatureExtractor
[[autodoc]] Speech2TextFeatureExtractor
- __call__
## Speech2TextProcessor
[[autodoc]] Speech2TextProcessor
- __call__
- from_pretrained
- save_pretrained
- batch_decode
- decode
- as_target_processor
## Speech2TextModel
[[autodoc]] Speech2TextModel
- forward
## Speech2TextForConditionalGeneration
[[autodoc]] Speech2TextForConditionalGeneration
- forward
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment