Unverified Commit 207594be authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Convert rst files (#14888)

* Convert all tutorials and guides

* Convert all remaining rst to mdx

* Track and fix bad links
parent b0c7d2ec
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Model outputs
-----------------------------------------------------------------------------------------------------------------------
All models have outputs that are instances of subclasses of :class:`~transformers.file_utils.ModelOutput`. Those are
data structures containing all the information returned by the model, but that can also be used as tuples or
dictionaries.
Let's see of this looks on an example:
.. code-block::
from transformers import BertTokenizer, BertForSequenceClassification
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(**inputs, labels=labels)
The ``outputs`` object is a :class:`~transformers.modeling_outputs.SequenceClassifierOutput`, as we can see in the
documentation of that class below, it means it has an optional ``loss``, a ``logits`` an optional ``hidden_states`` and
an optional ``attentions`` attribute. Here we have the ``loss`` since we passed along ``labels``, but we don't have
``hidden_states`` and ``attentions`` because we didn't pass ``output_hidden_states=True`` or
``output_attentions=True``.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get ``None``. Here for instance ``outputs.loss`` is the loss computed by the model, and ``outputs.attentions`` is
``None``.
When considering our ``outputs`` object as tuple, it only considers the attributes that don't have ``None`` values.
Here for instance, it has two elements, ``loss`` then ``logits``, so
.. code-block::
outputs[:2]
will return the tuple ``(outputs.loss, outputs.logits)`` for instance.
When considering our ``outputs`` object as dictionary, it only considers the attributes that don't have ``None``
values. Here for instance, it has two keys that are ``loss`` and ``logits``.
We document here the generic model outputs that are used by more than one model type. Specific output types are
documented on their corresponding model page.
ModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.file_utils.ModelOutput
:members: to_tuple
BaseModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutput
:members:
BaseModelOutputWithPooling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithPooling
:members:
BaseModelOutputWithCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithCrossAttentions
:members:
BaseModelOutputWithPoolingAndCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions
:members:
BaseModelOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithPast
:members:
BaseModelOutputWithPastAndCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions
:members:
Seq2SeqModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqModelOutput
:members:
CausalLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.CausalLMOutput
:members:
CausalLMOutputWithCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.CausalLMOutputWithCrossAttentions
:members:
CausalLMOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.CausalLMOutputWithPast
:members:
MaskedLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.MaskedLMOutput
:members:
Seq2SeqLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqLMOutput
:members:
NextSentencePredictorOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.NextSentencePredictorOutput
:members:
SequenceClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.SequenceClassifierOutput
:members:
Seq2SeqSequenceClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput
:members:
MultipleChoiceModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.MultipleChoiceModelOutput
:members:
TokenClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.TokenClassifierOutput
:members:
QuestionAnsweringModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.QuestionAnsweringModelOutput
:members:
Seq2SeqQuestionAnsweringModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput
:members:
TFBaseModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFBaseModelOutput
:members:
TFBaseModelOutputWithPooling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling
:members:
TFBaseModelOutputWithPoolingAndCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions
:members:
TFBaseModelOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFBaseModelOutputWithPast
:members:
TFBaseModelOutputWithPastAndCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions
:members:
TFSeq2SeqModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFSeq2SeqModelOutput
:members:
TFCausalLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFCausalLMOutput
:members:
TFCausalLMOutputWithCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions
:members:
TFCausalLMOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFCausalLMOutputWithPast
:members:
TFMaskedLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFMaskedLMOutput
:members:
TFSeq2SeqLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFSeq2SeqLMOutput
:members:
TFNextSentencePredictorOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFNextSentencePredictorOutput
:members:
TFSequenceClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFSequenceClassifierOutput
:members:
TFSeq2SeqSequenceClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput
:members:
TFMultipleChoiceModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
:members:
TFTokenClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFTokenClassifierOutput
:members:
TFQuestionAnsweringModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
:members:
TFSeq2SeqQuestionAnsweringModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_tf_outputs.TFSeq2SeqQuestionAnsweringModelOutput
:members:
FlaxBaseModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxBaseModelOutput
FlaxBaseModelOutputWithPast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPast
FlaxBaseModelOutputWithPooling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
FlaxBaseModelOutputWithPastAndCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions
FlaxSeq2SeqModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput
FlaxCausalLMOutputWithCrossAttentions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions
FlaxMaskedLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxMaskedLMOutput
FlaxSeq2SeqLMOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput
FlaxNextSentencePredictorOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput
FlaxSequenceClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput
FlaxSeq2SeqSequenceClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput
FlaxMultipleChoiceModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput
FlaxTokenClassifierOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxTokenClassifierOutput
FlaxQuestionAnsweringModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput
FlaxSeq2SeqQuestionAnsweringModelOutput
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
The pipelines are a great and easy way to use models for inference. These pipelines are objects that abstract most of
the complex code from the library, offering a simple API dedicated to several tasks, including Named Entity
Recognition, Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question Answering. See the
[task summary](../task_summary) for examples of use.
There are two categories of pipeline abstractions to be aware about:
- The [`pipeline`] which is the most powerful object encapsulating all other pipelines.
- The other task-specific pipelines:
- [`AudioClassificationPipeline`]
- [`AutomaticSpeechRecognitionPipeline`]
- [`ConversationalPipeline`]
- [`FeatureExtractionPipeline`]
- [`FillMaskPipeline`]
- [`ImageClassificationPipeline`]
- [`ImageSegmentationPipeline`]
- [`ObjectDetectionPipeline`]
- [`QuestionAnsweringPipeline`]
- [`SummarizationPipeline`]
- [`TableQuestionAnsweringPipeline`]
- [`TextClassificationPipeline`]
- [`TextGenerationPipeline`]
- [`Text2TextGenerationPipeline`]
- [`TokenClassificationPipeline`]
- [`TranslationPipeline`]
- [`ZeroShotClassificationPipeline`]
## The pipeline abstraction
The *pipeline* abstraction is a wrapper around all the other available pipelines. It is instantiated as any other
pipeline but can provide additional quality of life.
Simple call on one item:
```python
>>> pipe = pipeline("text-classification")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```
If you want to use a specific model from the [hub](https://huggingface.co) you can ignore the task if the model on
the hub already defines it:
```python
>>> pipe = pipeline(model="roberta-large-mnli")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```
To call a pipeline on many items, you can either call with a *list*.
```python
>>> pipe = pipeline("text-classification")
>>> pipe(["This restaurant is awesome", "This restaurant is aweful"])
[{'label': 'POSITIVE', 'score': 0.9998743534088135},
{'label': 'NEGATIVE', 'score': 0.9996669292449951}]
```
To iterate of full datasets it is recommended to use a `dataset` directly. This means you don't need to allocate
the whole dataset at once, nor do you need to do batching yourself. This should work just as fast as custom loops on
GPU. If it doesn't don't hesitate to create an issue.
```python
import datasets
from transformers import pipeline
from transformers.pipelines.base import KeyDataset
import tqdm
pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
dataset = datasets.load_dataset("superb", name="asr", split="test")
# KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item
# as we're not interested in the *target* part of the dataset.
for out in tqdm.tqdm(pipe(KeyDataset(dataset, "file"))):
print(out)
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
# {"text": ....}
# ....
```
[[autodoc]] pipeline
## Pipeline batching
All pipelines (except *zero-shot-classification* and *question-answering* currently) can use batching. This will work
whenever the pipeline uses its streaming ability (so when passing lists or `Dataset`).
```python
from transformers import pipeline
from transformers.pipelines.base import KeyDataset
import datasets
import tqdm
dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
pipe = pipeline("text-classification", device=0)
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
print(out)
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
# Exactly the same output as before, but the content are passed
# as batches to the model
```
<Tip warning={true}>
However, this is not automatically a win for performance. It can be either a 10x speedup or 5x slowdown depending
on hardware, data and the actual model being used.
Example where it's most a speedup:
</Tip>
```python
from transformers import pipeline
from torch.utils.data import Dataset
import tqdm
pipe = pipeline("text-classification", device=0)
class MyDataset(Dataset):
def __len__(self):
return 5000
def __getitem__(self, i):
return "This is a test"
dataset = MyDataset()
for batch_size in [1, 8, 64, 256]:
print("-" * 30)
print(f"Streaming batch_size={batch_size}")
for out in tqdm.tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
pass
```
```
# On GTX 970
------------------------------
Streaming no batching
100%|██████████████████████████████████████████████████████████████████████| 5000/5000 [00:26<00:00, 187.52it/s]
------------------------------
Streaming batch_size=8
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:04<00:00, 1205.95it/s]
------------------------------
Streaming batch_size=64
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:02<00:00, 2478.24it/s]
------------------------------
Streaming batch_size=256
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:01<00:00, 2554.43it/s]
(diminishing returns, saturated the GPU)
```
Example where it's most a slowdown:
```python
class MyDataset(Dataset):
def __len__(self):
return 5000
def __getitem__(self, i):
if i % 64 == 0:
n = 100
else:
n = 1
return "This is a test" * n
```
This is a occasional very long sentence compared to the other. In that case, the **whole** batch will need to be 400
tokens long, so the whole batch will be [64, 400] instead of [64, 4], leading to the high slowdown. Even worse, on
bigger batches, the program simply crashes.
```
------------------------------
Streaming no batching
100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 183.69it/s]
------------------------------
Streaming batch_size=8
100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:03<00:00, 265.74it/s]
------------------------------
Streaming batch_size=64
100%|██████████████████████████████████████████████████████████████████████| 1000/1000 [00:26<00:00, 37.80it/s]
------------------------------
Streaming batch_size=256
0%| | 0/1000 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/home/nicolas/src/transformers/test.py", line 42, in <module>
for out in tqdm.tqdm(pipe(dataset, batch_size=256), total=len(dataset)):
....
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch)
```
There are no good (general) solutions for this problem, and your mileage may vary depending on your use cases. Rule of
thumb:
For users, a rule of thumb is:
- **Measure performance on your load, with your hardware. Measure, measure, and keep measuring. Real numbers are the
only way to go.**
- If you are latency constrained (live product doing inference), don't batch
- If you are using CPU, don't batch.
- If you are using throughput (you want to run your model on a bunch of static data), on GPU, then:
- If you have no clue about the size of the sequence_length ("natural" data), by default don't batch, measure and
try tentatively to add it, add OOM checks to recover when it will fail (and it will at some point if you don't
control the sequence_length.)
- If your sequence_length is super regular, then batching is more likely to be VERY interesting, measure and push
it until you get OOMs.
- The larger the GPU the more likely batching is going to be more interesting
- As soon as you enable batching, make sure you can handle OOMs nicely.
## Pipeline custom code
If you want to override a specific pipeline.
Don't hesitate to create an issue for your task at hand, the goal of the pipeline is to be easy to use and support most
cases, so `transformers` could maybe support your use case.
If you want to try simply you can:
- Subclass your pipeline of choice
```python
class MyPipeline(TextClassificationPipeline):
def postprocess(...):
...
scores = scores * 100
...
my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...)
# or if you use *pipeline* function, then:
my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)
```
That should enable you to do all the custom code you want.
## Implementing a pipeline
[Implementing a new pipeline](../add_new_pipeline)
## The task specific pipelines
### AudioClassificationPipeline
[[autodoc]] AudioClassificationPipeline
- __call__
- all
### AutomaticSpeechRecognitionPipeline
[[autodoc]] AutomaticSpeechRecognitionPipeline
- __call__
- all
### ConversationalPipeline
[[autodoc]] Conversation
[[autodoc]] ConversationalPipeline
- __call__
- all
### FeatureExtractionPipeline
[[autodoc]] FeatureExtractionPipeline
- __call__
- all
### FillMaskPipeline
[[autodoc]] FillMaskPipeline
- __call__
- all
### ImageClassificationPipeline
[[autodoc]] ImageClassificationPipeline
- __call__
- all
### ImageSegmentationPipeline
[[autodoc]] ImageSegmentationPipeline
- __call__
- all
### NerPipeline
[[autodoc]] NerPipeline
See [`TokenClassificationPipeline`] for all details.
### ObjectDetectionPipeline
[[autodoc]] ObjectDetectionPipeline
- __call__
- all
### QuestionAnsweringPipeline
[[autodoc]] QuestionAnsweringPipeline
- __call__
- all
### SummarizationPipeline
[[autodoc]] SummarizationPipeline
- __call__
- all
### TableQuestionAnsweringPipeline
[[autodoc]] TableQuestionAnsweringPipeline
- __call__
### TextClassificationPipeline
[[autodoc]] TextClassificationPipeline
- __call__
- all
### TextGenerationPipeline
[[autodoc]] TextGenerationPipeline
- __call__
- all
### Text2TextGenerationPipeline
[[autodoc]] Text2TextGenerationPipeline
- __call__
- all
### TokenClassificationPipeline
[[autodoc]] TokenClassificationPipeline
- __call__
- all
### TranslationPipeline
[[autodoc]] TranslationPipeline
- __call__
- all
### ZeroShotClassificationPipeline
[[autodoc]] ZeroShotClassificationPipeline
- __call__
- all
## Parent class: `Pipeline`
[[autodoc]] Pipeline
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Pipelines
-----------------------------------------------------------------------------------------------------------------------
The pipelines are a great and easy way to use models for inference. These pipelines are objects that abstract most of
the complex code from the library, offering a simple API dedicated to several tasks, including Named Entity
Recognition, Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question Answering. See the
:doc:`task summary <../task_summary>` for examples of use.
There are two categories of pipeline abstractions to be aware about:
- The :func:`~transformers.pipeline` which is the most powerful object encapsulating all other pipelines.
- The other task-specific pipelines:
- :class:`~transformers.AudioClassificationPipeline`
- :class:`~transformers.AutomaticSpeechRecognitionPipeline`
- :class:`~transformers.ConversationalPipeline`
- :class:`~transformers.FeatureExtractionPipeline`
- :class:`~transformers.FillMaskPipeline`
- :class:`~transformers.ImageClassificationPipeline`
- :class:`~transformers.ImageSegmentationPipeline`
- :class:`~transformers.ObjectDetectionPipeline`
- :class:`~transformers.QuestionAnsweringPipeline`
- :class:`~transformers.SummarizationPipeline`
- :class:`~transformers.TableQuestionAnsweringPipeline`
- :class:`~transformers.TextClassificationPipeline`
- :class:`~transformers.TextGenerationPipeline`
- :class:`~transformers.Text2TextGenerationPipeline`
- :class:`~transformers.TokenClassificationPipeline`
- :class:`~transformers.TranslationPipeline`
- :class:`~transformers.ZeroShotClassificationPipeline`
The pipeline abstraction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The `pipeline` abstraction is a wrapper around all the other available pipelines. It is instantiated as any other
pipeline but can provide additional quality of life.
Simple call on one item:
.. code-block::
>>> pipe = pipeline("text-classification")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
If you want to use a specific model from the `hub <https://huggingface.co>`__ you can ignore the task if the model on
the hub already defines it:
.. code-block::
>>> pipe = pipeline(model="roberta-large-mnli")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
To call a pipeline on many items, you can either call with a `list`.
.. code-block::
>>> pipe = pipeline("text-classification")
>>> pipe(["This restaurant is awesome", "This restaurant is aweful"])
[{'label': 'POSITIVE', 'score': 0.9998743534088135},
{'label': 'NEGATIVE', 'score': 0.9996669292449951}]
To iterate of full datasets it is recommended to use a :obj:`dataset` directly. This means you don't need to allocate
the whole dataset at once, nor do you need to do batching yourself. This should work just as fast as custom loops on
GPU. If it doesn't don't hesitate to create an issue.
.. code-block::
import datasets
from transformers import pipeline
from transformers.pipelines.base import KeyDataset
import tqdm
pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
dataset = datasets.load_dataset("superb", name="asr", split="test")
# KeyDataset (only `pt`) will simply return the item in the dict returned by the dataset item
# as we're not interested in the `target` part of the dataset.
for out in tqdm.tqdm(pipe(KeyDataset(dataset, "file"))):
print(out)
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
# {"text": ....}
# ....
.. autofunction:: transformers.pipeline
Pipeline batching
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All pipelines (except `zero-shot-classification` and `question-answering` currently) can use batching. This will work
whenever the pipeline uses its streaming ability (so when passing lists or :obj:`Dataset`).
.. code-block::
from transformers import pipeline
from transformers.pipelines.base import KeyDataset
import datasets
import tqdm
dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
pipe = pipeline("text-classification", device=0)
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
print(out)
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
# Exactly the same output as before, but the content are passed
# as batches to the model
.. warning::
However, this is not automatically a win for performance. It can be either a 10x speedup or 5x slowdown depending
on hardware, data and the actual model being used.
Example where it's most a speedup:
.. code-block::
from transformers import pipeline
from torch.utils.data import Dataset
import tqdm
pipe = pipeline("text-classification", device=0)
class MyDataset(Dataset):
def __len__(self):
return 5000
def __getitem__(self, i):
return "This is a test"
dataset = MyDataset()
for batch_size in [1, 8, 64, 256]:
print("-" * 30)
print(f"Streaming batch_size={batch_size}")
for out in tqdm.tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
pass
.. code-block::
# On GTX 970
------------------------------
Streaming no batching
100%|██████████████████████████████████████████████████████████████████████| 5000/5000 [00:26<00:00, 187.52it/s]
------------------------------
Streaming batch_size=8
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:04<00:00, 1205.95it/s]
------------------------------
Streaming batch_size=64
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:02<00:00, 2478.24it/s]
------------------------------
Streaming batch_size=256
100%|█████████████████████████████████████████████████████████████████████| 5000/5000 [00:01<00:00, 2554.43it/s]
(diminishing returns, saturated the GPU)
Example where it's most a slowdown:
.. code-block::
class MyDataset(Dataset):
def __len__(self):
return 5000
def __getitem__(self, i):
if i % 64 == 0:
n = 100
else:
n = 1
return "This is a test" * n
This is a occasional very long sentence compared to the other. In that case, the **whole** batch will need to be 400
tokens long, so the whole batch will be [64, 400] instead of [64, 4], leading to the high slowdown. Even worse, on
bigger batches, the program simply crashes.
.. code-block::
------------------------------
Streaming no batching
100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 183.69it/s]
------------------------------
Streaming batch_size=8
100%|█████████████████████████████████████████████████████████████████████| 1000/1000 [00:03<00:00, 265.74it/s]
------------------------------
Streaming batch_size=64
100%|██████████████████████████████████████████████████████████████████████| 1000/1000 [00:26<00:00, 37.80it/s]
------------------------------
Streaming batch_size=256
0%| | 0/1000 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/home/nicolas/src/transformers/test.py", line 42, in <module>
for out in tqdm.tqdm(pipe(dataset, batch_size=256), total=len(dataset)):
....
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch)
There are no good (general) solutions for this problem, and your mileage may vary depending on your use cases. Rule of
thumb:
For users, a rule of thumb is:
- **Measure performance on your load, with your hardware. Measure, measure, and keep measuring. Real numbers are the
only way to go.**
- If you are latency constrained (live product doing inference), don't batch
- If you are using CPU, don't batch.
- If you are using throughput (you want to run your model on a bunch of static data), on GPU, then:
- If you have no clue about the size of the sequence_length ("natural" data), by default don't batch, measure and
try tentatively to add it, add OOM checks to recover when it will fail (and it will at some point if you don't
control the sequence_length.)
- If your sequence_length is super regular, then batching is more likely to be VERY interesting, measure and push
it until you get OOMs.
- The larger the GPU the more likely batching is going to be more interesting
- As soon as you enable batching, make sure you can handle OOMs nicely.
Pipeline custom code
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you want to override a specific pipeline.
Don't hesitate to create an issue for your task at hand, the goal of the pipeline is to be easy to use and support most
cases, so :obj:`transformers` could maybe support your use case.
If you want to try simply you can:
- Subclass your pipeline of choice
.. code-block::
class MyPipeline(TextClassificationPipeline):
def postprocess(...):
...
scores = scores * 100
...
my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...)
# or if you use `pipeline` function, then:
my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)
That should enable you to do all the custom code you want.
Implementing a pipeline
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:doc:`Implementing a new pipeline <../add_new_pipeline>`
The task specific pipelines
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AudioClassificationPipeline
=======================================================================================================================
.. autoclass:: transformers.AudioClassificationPipeline
:special-members: __call__
:members:
AutomaticSpeechRecognitionPipeline
=======================================================================================================================
.. autoclass:: transformers.AutomaticSpeechRecognitionPipeline
:special-members: __call__
:members:
ConversationalPipeline
=======================================================================================================================
.. autoclass:: transformers.Conversation
.. autoclass:: transformers.ConversationalPipeline
:special-members: __call__
:members:
FeatureExtractionPipeline
=======================================================================================================================
.. autoclass:: transformers.FeatureExtractionPipeline
:special-members: __call__
:members:
FillMaskPipeline
=======================================================================================================================
.. autoclass:: transformers.FillMaskPipeline
:special-members: __call__
:members:
ImageClassificationPipeline
=======================================================================================================================
.. autoclass:: transformers.ImageClassificationPipeline
:special-members: __call__
:members:
ImageSegmentationPipeline
=======================================================================================================================
.. autoclass:: transformers.ImageSegmentationPipeline
:special-members: __call__
:members:
NerPipeline
=======================================================================================================================
.. autoclass:: transformers.NerPipeline
See :class:`~transformers.TokenClassificationPipeline` for all details.
ObjectDetectionPipeline
=======================================================================================================================
.. autoclass:: transformers.ObjectDetectionPipeline
:special-members: __call__
:members:
QuestionAnsweringPipeline
=======================================================================================================================
.. autoclass:: transformers.QuestionAnsweringPipeline
:special-members: __call__
:members:
SummarizationPipeline
=======================================================================================================================
.. autoclass:: transformers.SummarizationPipeline
:special-members: __call__
:members:
TableQuestionAnsweringPipeline
=======================================================================================================================
.. autoclass:: transformers.TableQuestionAnsweringPipeline
:special-members: __call__
TextClassificationPipeline
=======================================================================================================================
.. autoclass:: transformers.TextClassificationPipeline
:special-members: __call__
:members:
TextGenerationPipeline
=======================================================================================================================
.. autoclass:: transformers.TextGenerationPipeline
:special-members: __call__
:members:
Text2TextGenerationPipeline
=======================================================================================================================
.. autoclass:: transformers.Text2TextGenerationPipeline
:special-members: __call__
:members:
TokenClassificationPipeline
=======================================================================================================================
.. autoclass:: transformers.TokenClassificationPipeline
:special-members: __call__
:members:
TranslationPipeline
=======================================================================================================================
.. autoclass:: transformers.TranslationPipeline
:special-members: __call__
:members:
ZeroShotClassificationPipeline
=======================================================================================================================
.. autoclass:: transformers.ZeroShotClassificationPipeline
:special-members: __call__
:members:
Parent class: :obj:`Pipeline`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.Pipeline
:members:
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Processors
This library includes processors for several traditional tasks. These processors can be used to process a dataset into
examples that can be fed to a model.
## Processors
All processors follow the same architecture which is that of the
[`~data.processors.utils.DataProcessor`]. The processor returns a list of
[`~data.processors.utils.InputExample`]. These
[`~data.processors.utils.InputExample`] can be converted to
[`~data.processors.utils.InputFeatures`] in order to be fed to the model.
[[autodoc]] data.processors.utils.DataProcessor
[[autodoc]] data.processors.utils.InputExample
[[autodoc]] data.processors.utils.InputFeatures
## GLUE
[General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com/) is a benchmark that evaluates the
performance of models across a diverse set of existing NLU tasks. It was released together with the paper [GLUE: A
multi-task benchmark and analysis platform for natural language understanding](https://openreview.net/pdf?id=rJ4km2R5t7)
This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched), CoLA, SST2, STSB,
QQP, QNLI, RTE and WNLI.
Those processors are:
- [`~data.processors.utils.MrpcProcessor`]
- [`~data.processors.utils.MnliProcessor`]
- [`~data.processors.utils.MnliMismatchedProcessor`]
- [`~data.processors.utils.Sst2Processor`]
- [`~data.processors.utils.StsbProcessor`]
- [`~data.processors.utils.QqpProcessor`]
- [`~data.processors.utils.QnliProcessor`]
- [`~data.processors.utils.RteProcessor`]
- [`~data.processors.utils.WnliProcessor`]
Additionally, the following method can be used to load values from a data file and convert them to a list of
[`~data.processors.utils.InputExample`].
automethod,transformers.data.processors.glue.glue_convert_examples_to_features
### Example usage
An example using these processors is given in the [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/legacy/text-classification/run_glue.py) script.
## XNLI
[The Cross-Lingual NLI Corpus (XNLI)](https://www.nyu.edu/projects/bowman/xnli/) is a benchmark that evaluates the
quality of cross-lingual text representations. XNLI is crowd-sourced dataset based on [*MultiNLI*](http://www.nyu.edu/projects/bowman/multinli/): pairs of text are labeled with textual entailment annotations for 15
different languages (including both high-resource language such as English and low-resource languages such as Swahili).
It was released together with the paper [XNLI: Evaluating Cross-lingual Sentence Representations](https://arxiv.org/abs/1809.05053)
This library hosts the processor to load the XNLI data:
- [`~data.processors.utils.XnliProcessor`]
Please note that since the gold labels are available on the test set, evaluation is performed on the test set.
An example using these processors is given in the [run_xnli.py](https://github.com/huggingface/transformers/tree/master/examples/legacy/text-classification/run_xnli.py) script.
## SQuAD
[The Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer//) is a benchmark that
evaluates the performance of models on question answering. Two versions are available, v1.1 and v2.0. The first version
(v1.1) was released together with the paper [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250). The second version (v2.0) was released alongside the paper [Know What You Don't
Know: Unanswerable Questions for SQuAD](https://arxiv.org/abs/1806.03822).
This library hosts a processor for each of the two versions:
### Processors
Those processors are:
- [`~data.processors.utils.SquadV1Processor`]
- [`~data.processors.utils.SquadV2Processor`]
They both inherit from the abstract class [`~data.processors.utils.SquadProcessor`]
[[autodoc]] data.processors.squad.SquadProcessor
- all
Additionally, the following method can be used to convert SQuAD examples into
[`~data.processors.utils.SquadFeatures`] that can be used as model inputs.
automethod,transformers.data.processors.squad.squad_convert_examples_to_features
These processors as well as the aforementionned method can be used with files containing the data as well as with the
*tensorflow_datasets* package. Examples are given below.
### Example usage
Here is an example using the processors as well as the conversion method using data files:
```python
# Loading a V2 processor
processor = SquadV2Processor()
examples = processor.get_dev_examples(squad_v2_data_dir)
# Loading a V1 processor
processor = SquadV1Processor()
examples = processor.get_dev_examples(squad_v1_data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
```
Using *tensorflow_datasets* is as easy as using a data file:
```python
# tensorflow_datasets only handle Squad V1.
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
```
Another example using these processors is given in the [run_squad.py](https://github.com/huggingface/transformers/tree/master/examples/legacy/question-answering/run_squad.py) script.
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Processors
-----------------------------------------------------------------------------------------------------------------------
This library includes processors for several traditional tasks. These processors can be used to process a dataset into
examples that can be fed to a model.
Processors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All processors follow the same architecture which is that of the
:class:`~transformers.data.processors.utils.DataProcessor`. The processor returns a list of
:class:`~transformers.data.processors.utils.InputExample`. These
:class:`~transformers.data.processors.utils.InputExample` can be converted to
:class:`~transformers.data.processors.utils.InputFeatures` in order to be fed to the model.
.. autoclass:: transformers.data.processors.utils.DataProcessor
:members:
.. autoclass:: transformers.data.processors.utils.InputExample
:members:
.. autoclass:: transformers.data.processors.utils.InputFeatures
:members:
GLUE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`General Language Understanding Evaluation (GLUE) <https://gluebenchmark.com/>`__ is a benchmark that evaluates the
performance of models across a diverse set of existing NLU tasks. It was released together with the paper `GLUE: A
multi-task benchmark and analysis platform for natural language understanding
<https://openreview.net/pdf?id=rJ4km2R5t7>`__
This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched), CoLA, SST2, STSB,
QQP, QNLI, RTE and WNLI.
Those processors are:
- :class:`~transformers.data.processors.utils.MrpcProcessor`
- :class:`~transformers.data.processors.utils.MnliProcessor`
- :class:`~transformers.data.processors.utils.MnliMismatchedProcessor`
- :class:`~transformers.data.processors.utils.Sst2Processor`
- :class:`~transformers.data.processors.utils.StsbProcessor`
- :class:`~transformers.data.processors.utils.QqpProcessor`
- :class:`~transformers.data.processors.utils.QnliProcessor`
- :class:`~transformers.data.processors.utils.RteProcessor`
- :class:`~transformers.data.processors.utils.WnliProcessor`
Additionally, the following method can be used to load values from a data file and convert them to a list of
:class:`~transformers.data.processors.utils.InputExample`.
.. automethod:: transformers.data.processors.glue.glue_convert_examples_to_features
Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
An example using these processors is given in the :prefix_link:`run_glue.py
<examples/legacy/text-classification/run_glue.py>` script.
XNLI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`The Cross-Lingual NLI Corpus (XNLI) <https://www.nyu.edu/projects/bowman/xnli/>`__ is a benchmark that evaluates the
quality of cross-lingual text representations. XNLI is crowd-sourced dataset based on `MultiNLI
<http://www.nyu.edu/projects/bowman/multinli/>`: pairs of text are labeled with textual entailment annotations for 15
different languages (including both high-resource language such as English and low-resource languages such as Swahili).
It was released together with the paper `XNLI: Evaluating Cross-lingual Sentence Representations
<https://arxiv.org/abs/1809.05053>`__
This library hosts the processor to load the XNLI data:
- :class:`~transformers.data.processors.utils.XnliProcessor`
Please note that since the gold labels are available on the test set, evaluation is performed on the test set.
An example using these processors is given in the :prefix_link:`run_xnli.py
<examples/legacy/text-classification/run_xnli.py>` script.
SQuAD
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`The Stanford Question Answering Dataset (SQuAD) <https://rajpurkar.github.io/SQuAD-explorer//>`__ is a benchmark that
evaluates the performance of models on question answering. Two versions are available, v1.1 and v2.0. The first version
(v1.1) was released together with the paper `SQuAD: 100,000+ Questions for Machine Comprehension of Text
<https://arxiv.org/abs/1606.05250>`__. The second version (v2.0) was released alongside the paper `Know What You Don't
Know: Unanswerable Questions for SQuAD <https://arxiv.org/abs/1806.03822>`__.
This library hosts a processor for each of the two versions:
Processors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Those processors are:
- :class:`~transformers.data.processors.utils.SquadV1Processor`
- :class:`~transformers.data.processors.utils.SquadV2Processor`
They both inherit from the abstract class :class:`~transformers.data.processors.utils.SquadProcessor`
.. autoclass:: transformers.data.processors.squad.SquadProcessor
:members:
Additionally, the following method can be used to convert SQuAD examples into
:class:`~transformers.data.processors.utils.SquadFeatures` that can be used as model inputs.
.. automethod:: transformers.data.processors.squad.squad_convert_examples_to_features
These processors as well as the aforementionned method can be used with files containing the data as well as with the
`tensorflow_datasets` package. Examples are given below.
Example usage
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example using the processors as well as the conversion method using data files:
.. code-block::
# Loading a V2 processor
processor = SquadV2Processor()
examples = processor.get_dev_examples(squad_v2_data_dir)
# Loading a V1 processor
processor = SquadV1Processor()
examples = processor.get_dev_examples(squad_v1_data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
Using `tensorflow_datasets` is as easy as using a data file:
.. code-block::
# tensorflow_datasets only handle Squad V1.
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
Another example using these processors is given in the :prefix_link:`run_squad.py
<examples/legacy/question-answering/run_squad.py>` script.
..
Copyright 2020 The HuggingFace Team. All rights reserved.
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
Tokenizer
-----------------------------------------------------------------------------------------------------------------------
# Tokenizer
A tokenizer is in charge of preparing the inputs for a model. The library contains tokenizers for all the models. Most
of the tokenizers are available in two flavors: a full python implementation and a "Fast" implementation based on the
Rust library `tokenizers <https://github.com/huggingface/tokenizers>`__. The "Fast" implementations allows:
Rust library [🤗 Tokenizers](https://github.com/huggingface/tokenizers). The "Fast" implementations allows:
1. a significant speed-up in particular when doing batched tokenization and
2. additional methods to map between the original string (character and words) and the token space (e.g. getting the
......@@ -23,14 +22,14 @@ Rust library `tokenizers <https://github.com/huggingface/tokenizers>`__. The "Fa
no "Fast" implementation is available for the SentencePiece-based tokenizers (for T5, ALBERT, CamemBERT, XLM-RoBERTa
and XLNet models).
The base classes :class:`~transformers.PreTrainedTokenizer` and :class:`~transformers.PreTrainedTokenizerFast`
The base classes [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`]
implement the common methods for encoding string inputs in model inputs (see below) and instantiating/saving python and
"Fast" tokenizers either from a local file or directory or from a pretrained tokenizer provided by the library
(downloaded from HuggingFace's AWS S3 repository). They both rely on
:class:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase` that contains the common methods, and
:class:`~transformers.tokenization_utils_base.SpecialTokensMixin`.
[`~tokenization_utils_base.PreTrainedTokenizerBase`] that contains the common methods, and
[`~tokenization_utils_base.SpecialTokensMixin`].
:class:`~transformers.PreTrainedTokenizer` and :class:`~transformers.PreTrainedTokenizerFast` thus implement the main
[`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] thus implement the main
methods for using all the tokenizers:
- Tokenizing (splitting strings in sub-word token strings), converting tokens strings to ids and back, and
......@@ -39,40 +38,40 @@ methods for using all the tokenizers:
- Managing special tokens (like mask, beginning-of-sentence, etc.): adding them, assigning them to attributes in the
tokenizer for easy access and making sure they are not split during tokenization.
:class:`~transformers.BatchEncoding` holds the output of the
:class:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase`'s encoding methods (``__call__``,
``encode_plus`` and ``batch_encode_plus``) and is derived from a Python dictionary. When the tokenizer is a pure python
[`BatchEncoding`] holds the output of the
[`~tokenization_utils_base.PreTrainedTokenizerBase`]'s encoding methods (`__call__`,
`encode_plus` and `batch_encode_plus`) and is derived from a Python dictionary. When the tokenizer is a pure python
tokenizer, this class behaves just like a standard python dictionary and holds the various model inputs computed by
these methods (``input_ids``, ``attention_mask``...). When the tokenizer is a "Fast" tokenizer (i.e., backed by
HuggingFace `tokenizers library <https://github.com/huggingface/tokenizers>`__), this class provides in addition
these methods (`input_ids`, `attention_mask`...). When the tokenizer is a "Fast" tokenizer (i.e., backed by
HuggingFace [tokenizers library](https://github.com/huggingface/tokenizers)), this class provides in addition
several advanced alignment methods which can be used to map between the original string (character and words) and the
token space (e.g., getting the index of the token comprising a given character or the span of characters corresponding
to a given token).
PreTrainedTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## PreTrainedTokenizer
.. autoclass:: transformers.PreTrainedTokenizer
:special-members: __call__, batch_decode, decode, encode, push_to_hub
:members:
[[autodoc]] PreTrainedTokenizer
- __call__
- batch_decode
- decode
- encode
- push_to_hub
- all
## PreTrainedTokenizerFast
PreTrainedTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [`PreTrainedTokenizerFast`] depend on the [tokenizers](https://huggingface.co/docs/tokenizers) library. The tokenizers obtained from the 🤗 tokenizers library can be
loaded very simply into 🤗 transformers. Take a look at the [Using tokenizers from 🤗 tokenizers](../fast_tokenizers) page to understand how this is done.
The :class:`~transformers.PreTrainedTokenizerFast` depend on the `tokenizers
<https://huggingface.co/docs/tokenizers>`__ library. The tokenizers obtained from the 🤗 tokenizers library can be
loaded very simply into 🤗 transformers. Take a look at the :doc:`Using tokenizers from 🤗 tokenizers
<../fast_tokenizers>` page to understand how this is done.
[[autodoc]] PreTrainedTokenizerFast
- __call__
- batch_decode
- decode
- encode
- push_to_hub
- all
.. autoclass:: transformers.PreTrainedTokenizerFast
:special-members: __call__, batch_decode, decode, encode, push_to_hub
:members:
## BatchEncoding
BatchEncoding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.BatchEncoding
:members:
[[autodoc]] BatchEncoding
......@@ -73,8 +73,7 @@ inside the context manager [`~MBartTokenizer.as_target_tokenizer`] to encode tar
## Overview of MBart-50
MBart-50 was introduced in the *Multilingual Translation with Extensible Multilingual Pretraining and Finetuning
<https://arxiv.org/abs/2008.00401>* paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extendeding
its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50
languages.
......
..
Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
MegatronBERT
-----------------------------------------------------------------------------------------------------------------------
# MegatronBERT
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
The MegatronBERT model was proposed in `Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
The MegatronBERT model was proposed in [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
......@@ -40,115 +38,91 @@ of 89.4%).*
Tips:
We have provided pretrained `BERT-345M <https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m>`__ checkpoints
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first `sign up <https://ngc.nvidia.com/signup>`__ for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the `NGC documentation
<https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1>`__.
To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
Alternatively, you can directly download the checkpoints using:
BERT-345M-uncased::
BERT-345M-uncased:
.. code-block:: bash
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip
-O megatron_bert_345m_v0_1_uncased.zip
```
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip
-O megatron_bert_345m_v0_1_uncased.zip
BERT-345M-cased:
BERT-345M-cased::
.. code-block:: bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O
megatron_bert_345m_v0_1_cased.zip
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O
megatron_bert_345m_v0_1_cased.zip
```
Once you have obtained the checkpoints from NVIDIA GPU Cloud (NGC), you have to convert them to a format that will
easily be loaded by Hugging Face Transformers and our port of the BERT code.
The following commands allow you to do the conversion. We assume that the folder ``models/megatron_bert`` contains
``megatron_bert_345m_v0_1_{cased, uncased}.zip`` and that the commands are run from inside that folder::
.. code-block:: bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
The following commands allow you to do the conversion. We assume that the folder `models/megatron_bert` contains
`megatron_bert_345m_v0_1_{cased, uncased}.zip` and that the commands are run from inside that folder:
.. code-block:: bash
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
```
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
```
This model was contributed by `jdemouth <https://huggingface.co/jdemouth>`__. The original code can be found `here
<https://github.com/NVIDIA/Megatron-LM>`__. That repository contains a multi-GPU and multi-node implementation of the
This model was contributed by [jdemouth](https://huggingface.co/jdemouth). The original code can be found [here](https://github.com/NVIDIA/Megatron-LM). That repository contains a multi-GPU and multi-node implementation of the
Megatron Language models. In particular, it contains a hybrid model parallel approach using "tensor parallel" and
"pipeline parallel" techniques.
MegatronBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertConfig
:members:
MegatronBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertModel
:members: forward
MegatronBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForMaskedLM
:members: forward
MegatronBertForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForCausalLM
:members: forward
## MegatronBertConfig
MegatronBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] MegatronBertConfig
.. autoclass:: transformers.MegatronBertForNextSentencePrediction
:members: forward
## MegatronBertModel
[[autodoc]] MegatronBertModel
- forward
MegatronBertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## MegatronBertForMaskedLM
.. autoclass:: transformers.MegatronBertForPreTraining
:members: forward
[[autodoc]] MegatronBertForMaskedLM
- forward
## MegatronBertForCausalLM
MegatronBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] MegatronBertForCausalLM
- forward
.. autoclass:: transformers.MegatronBertForSequenceClassification
:members: forward
## MegatronBertForNextSentencePrediction
[[autodoc]] MegatronBertForNextSentencePrediction
- forward
MegatronBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## MegatronBertForPreTraining
.. autoclass:: transformers.MegatronBertForMultipleChoice
:members: forward
[[autodoc]] MegatronBertForPreTraining
- forward
## MegatronBertForSequenceClassification
MegatronBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[[autodoc]] MegatronBertForSequenceClassification
- forward
.. autoclass:: transformers.MegatronBertForTokenClassification
:members: forward
## MegatronBertForMultipleChoice
[[autodoc]] MegatronBertForMultipleChoice
- forward
MegatronBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## MegatronBertForTokenClassification
.. autoclass:: transformers.MegatronBertForQuestionAnswering
:members: forward
[[autodoc]] MegatronBertForTokenClassification
- forward
## MegatronBertForQuestionAnswering
[[autodoc]] MegatronBertForQuestionAnswering
- forward
..
Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
MegatronGPT2
-----------------------------------------------------------------------------------------------------------------------
# MegatronGPT2
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
The MegatronGPT2 model was proposed in `Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
The MegatronGPT2 model was proposed in [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
......@@ -40,32 +38,30 @@ of 89.4%).*
Tips:
We have provided pretrained `GPT2-345M <https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m>`__ checkpoints
We have provided pretrained [GPT2-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first `sign up <https://ngc.nvidia.com/signup>`__ for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the `NGC documentation
<https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1>`__.
To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
Alternatively, you can directly download the checkpoints using::
Alternatively, you can directly download the checkpoints using:
.. code-block:: bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O
megatron_gpt2_345m_v0_0.zip
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O
megatron_gpt2_345m_v0_0.zip
```
Once you have obtained the checkpoint from NVIDIA GPU Cloud (NGC), you have to convert it to a format that will easily
be loaded by Hugging Face Transformers GPT2 implementation.
The following command allows you to do the conversion. We assume that the folder ``models/megatron_gpt2`` contains
``megatron_gpt2_345m_v0_0.zip`` and that the command is run from that folder::
.. code-block:: bash
The following command allows you to do the conversion. We assume that the folder `models/megatron_gpt2` contains
`megatron_gpt2_345m_v0_0.zip` and that the command is run from that folder:
python3 $PATH_TO_TRANSFORMERS/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_gpt2_345m_v0_0.zip
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_gpt2_345m_v0_0.zip
```
This model was contributed by `jdemouth <https://huggingface.co/jdemouth>`__. The original code can be found `here
<https://github.com/NVIDIA/Megatron-LM>`__. That repository contains a multi-GPU and multi-node implementation of the
This model was contributed by [jdemouth](https://huggingface.co/jdemouth). The original code can be found [here](https://github.com/NVIDIA/Megatron-LM). That repository contains a multi-GPU and multi-node implementation of the
Megatron Language models. In particular, it contains a hybrid model parallel approach using "tensor parallel" and
"pipeline parallel" techniques.
..
Copyright 2021 The HuggingFace Team. All rights reserved.
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
mLUKE
-----------------------------------------------------------------------------------------------------------------------
# mLUKE
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Overview
The mLUKE model was proposed in `mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models
<https://arxiv.org/abs/2110.08151>`__ by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. It's a multilingual extension
of the `LUKE model <https://arxiv.org/abs/2010.01057>`__ trained on the basis of XLM-RoBERTa.
The mLUKE model was proposed in [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. It's a multilingual extension
of the [LUKE model](https://arxiv.org/abs/2010.01057) trained on the basis of XLM-RoBERTa.
It is based on XLM-RoBERTa and adds entity embeddings, which helps improve performance on various downstream tasks
involving reasoning about entities such as named entity recognition, extractive question answering, relation
......@@ -38,29 +35,27 @@ knowledge more likely than using only word representations.*
One can directly plug in the weights of mLUKE into a LUKE model, like so:
.. code-block::
```python
from transformers import LukeModel
from transformers import LukeModel
model = LukeModel.from_pretrained('studio-ousia/mluke-base')
```
model = LukeModel.from_pretrained('studio-ousia/mluke-base')
Note that mLUKE has its own tokenizer, [`MLukeTokenizer`]. You can initialize it as follows:
Note that mLUKE has its own tokenizer, :class:`~transformers.MLukeTokenizer`. You can initialize it as follows:
```python
from transformers import MLukeTokenizer
.. code-block::
tokenizer = MLukeTokenizer.from_pretrained('studio-ousia/mluke-base')
```
from transformers import MLukeTokenizer
tokenizer = MLukeTokenizer.from_pretrained('studio-ousia/mluke-base')
As mLUKE's architecture is equivalent to that of LUKE, one can refer to :doc:`LUKE's documentation page <luke>` for all
As mLUKE's architecture is equivalent to that of LUKE, one can refer to [LUKE's documentation page](luke) for all
tips, code examples and notebooks.
This model was contributed by `ryo0634 <https://huggingface.co/ryo0634>`__. The original code can be found `here
<https://github.com/studio-ousia/luke>`__.
This model was contributed by [ryo0634](https://huggingface.co/ryo0634). The original code can be found [here](https://github.com/studio-ousia/luke).
MLukeTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## MLukeTokenizer
.. autoclass:: transformers.MLukeTokenizer
:members: __call__, save_vocabulary
[[autodoc]] MLukeTokenizer
- __call__
- save_vocabulary
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MobileBERT
## Overview
The MobileBERT model was proposed in [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. It's a bidirectional transformer based on the BERT model, which is compressed and accelerated using several
approaches.
The abstract from the paper is the following:
*Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds
of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot
be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating
the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to
various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while
equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE
model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is
4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the
natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms
latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of
90.0/79.2 (1.5/2.1 higher than BERT_BASE).*
Tips:
- MobileBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained
with a causal language modeling (CLM) objective are better in that regard.
This model was contributed by [vshampor](https://huggingface.co/vshampor). The original code can be found [here](https://github.com/google-research/mobilebert).
## MobileBertConfig
[[autodoc]] MobileBertConfig
## MobileBertTokenizer
[[autodoc]] MobileBertTokenizer
## MobileBertTokenizerFast
[[autodoc]] MobileBertTokenizerFast
## MobileBert specific outputs
[[autodoc]] models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput
[[autodoc]] models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput
## MobileBertModel
[[autodoc]] MobileBertModel
- forward
## MobileBertForPreTraining
[[autodoc]] MobileBertForPreTraining
- forward
## MobileBertForMaskedLM
[[autodoc]] MobileBertForMaskedLM
- forward
## MobileBertForNextSentencePrediction
[[autodoc]] MobileBertForNextSentencePrediction
- forward
## MobileBertForSequenceClassification
[[autodoc]] MobileBertForSequenceClassification
- forward
## MobileBertForMultipleChoice
[[autodoc]] MobileBertForMultipleChoice
- forward
## MobileBertForTokenClassification
[[autodoc]] MobileBertForTokenClassification
- forward
## MobileBertForQuestionAnswering
[[autodoc]] MobileBertForQuestionAnswering
- forward
## TFMobileBertModel
[[autodoc]] TFMobileBertModel
- call
## TFMobileBertForPreTraining
[[autodoc]] TFMobileBertForPreTraining
- call
## TFMobileBertForMaskedLM
[[autodoc]] TFMobileBertForMaskedLM
- call
## TFMobileBertForNextSentencePrediction
[[autodoc]] TFMobileBertForNextSentencePrediction
- call
## TFMobileBertForSequenceClassification
[[autodoc]] TFMobileBertForSequenceClassification
- call
## TFMobileBertForMultipleChoice
[[autodoc]] TFMobileBertForMultipleChoice
- call
## TFMobileBertForTokenClassification
[[autodoc]] TFMobileBertForTokenClassification
- call
## TFMobileBertForQuestionAnswering
[[autodoc]] TFMobileBertForQuestionAnswering
- call
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
MobileBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The MobileBERT model was proposed in `MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
<https://arxiv.org/abs/2004.02984>`__ by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. It's a bidirectional transformer based on the BERT model, which is compressed and accelerated using several
approaches.
The abstract from the paper is the following:
*Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds
of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot
be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating
the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to
various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while
equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE
model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is
4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the
natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms
latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of
90.0/79.2 (1.5/2.1 higher than BERT_BASE).*
Tips:
- MobileBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained
with a causal language modeling (CLM) objective are better in that regard.
This model was contributed by `vshampor <https://huggingface.co/vshampor>`__. The original code can be found `here
<https://github.com/google-research/mobilebert>`__.
MobileBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertConfig
:members:
MobileBertTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertTokenizer
:members:
MobileBertTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertTokenizerFast
:members:
MobileBert specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput
:members:
.. autoclass:: transformers.models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput
:members:
MobileBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertModel
:members: forward
MobileBertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForPreTraining
:members: forward
MobileBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForMaskedLM
:members: forward
MobileBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForNextSentencePrediction
:members: forward
MobileBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForSequenceClassification
:members: forward
MobileBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForMultipleChoice
:members: forward
MobileBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForTokenClassification
:members: forward
MobileBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MobileBertForQuestionAnswering
:members: forward
TFMobileBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertModel
:members: call
TFMobileBertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForPreTraining
:members: call
TFMobileBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForMaskedLM
:members: call
TFMobileBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForNextSentencePrediction
:members: call
TFMobileBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForSequenceClassification
:members: call
TFMobileBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForMultipleChoice
:members: call
TFMobileBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForTokenClassification
:members: call
TFMobileBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMobileBertForQuestionAnswering
:members: call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MPNet
## Overview
The MPNet model was proposed in [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of
masked language modeling and permuted language modeling for natural language understanding.
The abstract from the paper is the following:
*BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models.
Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for
pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and
thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel
pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the
dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position
information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in
XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of
down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large
margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g.,
BERT, XLNet, RoBERTa) under the same model setting.*
Tips:
- MPNet doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. just
separate your segments with the separation token `tokenizer.sep_token` (or `[sep]`).
The original code can be found [here](https://github.com/microsoft/MPNet).
## MPNetConfig
[[autodoc]] MPNetConfig
## MPNetTokenizer
[[autodoc]] MPNetTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## MPNetTokenizerFast
[[autodoc]] MPNetTokenizerFast
## MPNetModel
[[autodoc]] MPNetModel
- forward
## MPNetForMaskedLM
[[autodoc]] MPNetForMaskedLM
- forward
## MPNetForSequenceClassification
[[autodoc]] MPNetForSequenceClassification
- forward
## MPNetForMultipleChoice
[[autodoc]] MPNetForMultipleChoice
- forward
## MPNetForTokenClassification
[[autodoc]] MPNetForTokenClassification
- forward
## MPNetForQuestionAnswering
[[autodoc]] MPNetForQuestionAnswering
- forward
## TFMPNetModel
[[autodoc]] TFMPNetModel
- call
## TFMPNetForMaskedLM
[[autodoc]] TFMPNetForMaskedLM
- call
## TFMPNetForSequenceClassification
[[autodoc]] TFMPNetForSequenceClassification
- call
## TFMPNetForMultipleChoice
[[autodoc]] TFMPNetForMultipleChoice
- call
## TFMPNetForTokenClassification
[[autodoc]] TFMPNetForTokenClassification
- call
## TFMPNetForQuestionAnswering
[[autodoc]] TFMPNetForQuestionAnswering
- call
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
MPNet
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The MPNet model was proposed in `MPNet: Masked and Permuted Pre-training for Language Understanding
<https://arxiv.org/abs/2004.09297>`__ by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of
masked language modeling and permuted language modeling for natural language understanding.
The abstract from the paper is the following:
*BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models.
Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for
pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and
thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel
pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the
dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position
information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in
XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of
down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large
margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g.,
BERT, XLNet, RoBERTa) under the same model setting.*
Tips:
- MPNet doesn't have :obj:`token_type_ids`, you don't need to indicate which token belongs to which segment. just
separate your segments with the separation token :obj:`tokenizer.sep_token` (or :obj:`[sep]`).
The original code can be found `here <https://github.com/microsoft/MPNet>`__.
MPNetConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetConfig
:members:
MPNetTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
MPNetTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetTokenizerFast
:members:
MPNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetModel
:members: forward
MPNetForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetForMaskedLM
:members: forward
MPNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetForSequenceClassification
:members: forward
MPNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetForMultipleChoice
:members: forward
MPNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetForTokenClassification
:members: forward
MPNetForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MPNetForQuestionAnswering
:members: forward
TFMPNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMPNetModel
:members: call
TFMPNetForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMPNetForMaskedLM
:members: call
TFMPNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMPNetForSequenceClassification
:members: call
TFMPNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMPNetForMultipleChoice
:members: call
TFMPNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMPNetForTokenClassification
:members: call
TFMPNetForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMPNetForQuestionAnswering
:members: call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# mT5
## Overview
The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.
The abstract from the paper is the following:
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a
generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model
checkpoints used in this work are publicly available.*
Note: mT5 was only pre-trained on [mC4](https://huggingface.co/datasets/mc4) excluding any supervised training.
Therefore, this model has to be fine-tuned before it is useable on a downstream task, unlike the original T5 model.
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
Google has released the following variants:
- [google/mt5-small](https://huggingface.co/google/mt5-small)
- [google/mt5-base](https://huggingface.co/google/mt5-base)
- [google/mt5-large](https://huggingface.co/google/mt5-large)
- [google/mt5-xl](https://huggingface.co/google/mt5-xl)
- [google/mt5-xxl](https://huggingface.co/google/mt5-xxl).
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/multilingual-t5).
## MT5Config
[[autodoc]] MT5Config
## MT5Tokenizer
[[autodoc]] MT5Tokenizer
See [`T5Tokenizer`] for all details.
## MT5TokenizerFast
[[autodoc]] MT5TokenizerFast
See [`T5TokenizerFast`] for all details.
## MT5Model
[[autodoc]] MT5Model
## MT5ForConditionalGeneration
[[autodoc]] MT5ForConditionalGeneration
## MT5EncoderModel
[[autodoc]] MT5EncoderModel
## TFMT5Model
[[autodoc]] TFMT5Model
## TFMT5ForConditionalGeneration
[[autodoc]] TFMT5ForConditionalGeneration
## TFMT5EncoderModel
[[autodoc]] TFMT5EncoderModel
## FlaxMT5Model
[[autodoc]] FlaxMT5Model
## FlaxMT5ForConditionalGeneration
[[autodoc]] FlaxMT5ForConditionalGeneration
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
mT5
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The mT5 model was presented in `mT5: A massively multilingual pre-trained text-to-text transformer
<https://arxiv.org/abs/2010.11934>`_ by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.
The abstract from the paper is the following:
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a
generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model
checkpoints used in this work are publicly available.*
Note: mT5 was only pre-trained on `mC4 <https://huggingface.co/datasets/mc4>`__ excluding any supervised training.
Therefore, this model has to be fine-tuned before it is useable on a downstream task, unlike the original T5 model.
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
Google has released the following variants:
- `google/mt5-small <https://huggingface.co/google/mt5-small>`__
- `google/mt5-base <https://huggingface.co/google/mt5-base>`__
- `google/mt5-large <https://huggingface.co/google/mt5-large>`__
- `google/mt5-xl <https://huggingface.co/google/mt5-xl>`__
- `google/mt5-xxl <https://huggingface.co/google/mt5-xxl>`__.
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__. The original code can be
found `here <https://github.com/google-research/multilingual-t5>`__.
MT5Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5Config
:members:
MT5Tokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5Tokenizer
See :class:`~transformers.T5Tokenizer` for all details.
MT5TokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5TokenizerFast
See :class:`~transformers.T5TokenizerFast` for all details.
MT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5Model
:members:
MT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5ForConditionalGeneration
:members:
MT5EncoderModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5EncoderModel
:members:
TFMT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMT5Model
:members:
TFMT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMT5ForConditionalGeneration
:members:
TFMT5EncoderModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMT5EncoderModel
:members:
FlaxMT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxMT5Model
:members:
FlaxMT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxMT5ForConditionalGeneration
:members:
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pegasus
**DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=sshleifer&labels=&template=bug-report.md&title)
and assign @patrickvonplaten.
## Overview
The Pegasus model was proposed in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.
According to the abstract,
- Pegasus' pretraining task is intentionally similar to summarization: important sentences are removed/masked from an
input document and are generated together as one output sequence from the remaining sentences, similar to an
extractive summary.
- Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and human eval.
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The Authors' code can be found [here](https://github.com/google-research/pegasus).
## Checkpoints
All the [checkpoints](https://huggingface.co/models?search=pegasus) are fine-tuned for summarization, besides
*pegasus-large*, whence the other checkpoints are fine-tuned:
- Each checkpoint is 2.2 GB on disk and 568M parameters.
- FP16 is not supported (help/ideas on this appreciated!).
- Summarizing xsum in fp32 takes about 400ms/sample, with default parameters on a v100 GPU.
- Full replication results and correctly pre-processed data can be found in this [Issue](https://github.com/huggingface/transformers/issues/6844#issue-689259666).
- [Distilled checkpoints](https://huggingface.co/models?search=distill-pegasus) are described in this [paper](https://arxiv.org/abs/2010.13002).
### Examples
- [Script](https://github.com/huggingface/transformers/tree/master/examples/research_projects/seq2seq-distillation/finetune_pegasus_xsum.sh) to fine-tune pegasus
on the XSUM dataset. Data download instructions at [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization/README.md).
- FP16 is not supported (help/ideas on this appreciated!).
- The adafactor optimizer is recommended for pegasus fine-tuning.
## Implementation Notes
- All models are transformer encoder-decoders with 16 layers in each component.
- The implementation is completely inherited from [`BartForConditionalGeneration`]
- Some key configuration differences:
- static, sinusoidal position embeddings
- the model starts generating with pad_token_id (which has 0 token_embedding) as the prefix.
- more beams are used (`num_beams=8`)
- All pretrained pegasus checkpoints are the same besides three attributes: `tokenizer.model_max_length` (maximum
input size), `max_length` (the maximum number of tokens to generate) and `length_penalty`.
- The code to convert checkpoints trained in the author's [repo](https://github.com/google-research/pegasus) can be
found in `convert_pegasus_tf_to_pytorch.py`.
## Usage Example
```python
>>> from transformers import PegasusForConditionalGeneration, PegasusTokenizer
>>> import torch
>>> src_text = [
... """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
>>> ]
>>> model_name = 'google/pegasus-xsum'
>>> device = 'cuda' if torch.cuda.is_available() else 'cpu'
>>> tokenizer = PegasusTokenizer.from_pretrained(model_name)
>>> model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
>>> batch = tokenizer(src_text, truncation=True, padding='longest', return_tensors="pt").to(device)
>>> translated = model.generate(**batch)
>>> tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
>>> assert tgt_text[0] == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
```
## PegasusConfig
[[autodoc]] PegasusConfig
## PegasusTokenizer
warning: `add_tokens` does not work at the moment.
[[autodoc]] PegasusTokenizer
## PegasusTokenizerFast
[[autodoc]] PegasusTokenizerFast
## PegasusModel
[[autodoc]] PegasusModel
- forward
## PegasusForConditionalGeneration
[[autodoc]] PegasusForConditionalGeneration
- forward
## PegasusForCausalLM
[[autodoc]] PegasusForCausalLM
- forward
## TFPegasusModel
[[autodoc]] TFPegasusModel
- call
## TFPegasusForConditionalGeneration
[[autodoc]] TFPegasusForConditionalGeneration
- call
## FlaxPegasusModel
[[autodoc]] FlaxPegasusModel
- __call__
- encode
- decode
## FlaxPegasusForConditionalGeneration
[[autodoc]] FlaxPegasusForConditionalGeneration
- __call__
- encode
- decode
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Pegasus
-----------------------------------------------------------------------------------------------------------------------
**DISCLAIMER:** If you see something strange, file a `Github Issue
<https://github.com/huggingface/transformers/issues/new?assignees=sshleifer&labels=&template=bug-report.md&title>`__
and assign @patrickvonplaten.
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Pegasus model was proposed in `PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
<https://arxiv.org/pdf/1912.08777.pdf>`__ by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019.
According to the abstract,
- Pegasus' pretraining task is intentionally similar to summarization: important sentences are removed/masked from an
input document and are generated together as one output sequence from the remaining sentences, similar to an
extractive summary.
- Pegasus achieves SOTA summarization performance on all 12 downstream tasks, as measured by ROUGE and human eval.
This model was contributed by `sshleifer <https://huggingface.co/sshleifer>`__. The Authors' code can be found `here
<https://github.com/google-research/pegasus>`__.
Checkpoints
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All the `checkpoints <https://huggingface.co/models?search=pegasus>`__ are fine-tuned for summarization, besides
`pegasus-large`, whence the other checkpoints are fine-tuned:
- Each checkpoint is 2.2 GB on disk and 568M parameters.
- FP16 is not supported (help/ideas on this appreciated!).
- Summarizing xsum in fp32 takes about 400ms/sample, with default parameters on a v100 GPU.
- Full replication results and correctly pre-processed data can be found in this `Issue
<https://github.com/huggingface/transformers/issues/6844#issue-689259666>`__.
- `Distilled checkpoints <https://huggingface.co/models?search=distill-pegasus>`__ are described in this `paper
<https://arxiv.org/abs/2010.13002>`__.
Examples
_______________________________________________________________________________________________________________________
- :prefix_link:`Script <examples/research_projects/seq2seq-distillation/finetune_pegasus_xsum.sh>` to fine-tune pegasus
on the XSUM dataset. Data download instructions at :prefix_link:`examples/pytorch/summarization/
<examples/pytorch/summarization/README.md>`.
- FP16 is not supported (help/ideas on this appreciated!).
- The adafactor optimizer is recommended for pegasus fine-tuning.
Implementation Notes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- All models are transformer encoder-decoders with 16 layers in each component.
- The implementation is completely inherited from :class:`~transformers.BartForConditionalGeneration`
- Some key configuration differences:
- static, sinusoidal position embeddings
- the model starts generating with pad_token_id (which has 0 token_embedding) as the prefix.
- more beams are used (:obj:`num_beams=8`)
- All pretrained pegasus checkpoints are the same besides three attributes: :obj:`tokenizer.model_max_length` (maximum
input size), :obj:`max_length` (the maximum number of tokens to generate) and :obj:`length_penalty`.
- The code to convert checkpoints trained in the author's `repo <https://github.com/google-research/pegasus>`_ can be
found in ``convert_pegasus_tf_to_pytorch.py``.
Usage Example
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
>>> from transformers import PegasusForConditionalGeneration, PegasusTokenizer
>>> import torch
>>> src_text = [
... """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
>>> ]
>>> model_name = 'google/pegasus-xsum'
>>> device = 'cuda' if torch.cuda.is_available() else 'cpu'
>>> tokenizer = PegasusTokenizer.from_pretrained(model_name)
>>> model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
>>> batch = tokenizer(src_text, truncation=True, padding='longest', return_tensors="pt").to(device)
>>> translated = model.generate(**batch)
>>> tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
>>> assert tgt_text[0] == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
PegasusConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PegasusConfig
PegasusTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
warning: ``add_tokens`` does not work at the moment.
.. autoclass:: transformers.PegasusTokenizer
:members:
PegasusTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PegasusTokenizerFast
:members:
PegasusModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PegasusModel
:members: forward
PegasusForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PegasusForConditionalGeneration
:members: forward
PegasusForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.PegasusForCausalLM
:members: forward
TFPegasusModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFPegasusModel
:members: call
TFPegasusForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFPegasusForConditionalGeneration
:members: call
FlaxPegasusModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxPegasusModel
:members: __call__, encode, decode
FlaxPegasusForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxPegasusForConditionalGeneration
:members: __call__, encode, decode
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PhoBERT
## Overview
The PhoBERT model was proposed in [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92.pdf) by Dat Quoc Nguyen, Anh Tuan Nguyen.
The abstract from the paper is the following:
*We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual
language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent
best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple
Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and
Natural language inference.*
Example of use:
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> phobert = AutoModel.from_pretrained("vinai/phobert-base")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
>>> # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
>>> line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
>>> input_ids = torch.tensor([tokenizer.encode(line)])
>>> with torch.no_grad():
... features = phobert(input_ids) # Models outputs are now tuples
>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
```
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/PhoBERT).
## PhobertTokenizer
[[autodoc]] PhobertTokenizer
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment