Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1f9387d3
Unverified
Commit
1f9387d3
authored
Jun 18, 2024
by
Kevin Hu
Committed by
GitHub
Jun 18, 2024
Browse files
Fix typing errors in `Qwen2ForTokenClassification` (#31440)
* Update modeling_qwen2.py * Fix llama * More fixes
parent
9ba9369a
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
16 additions
and
16 deletions
+16
-16
src/transformers/models/llama/modeling_llama.py
src/transformers/models/llama/modeling_llama.py
+2
-2
src/transformers/models/mistral/modeling_mistral.py
src/transformers/models/mistral/modeling_mistral.py
+2
-2
src/transformers/models/mixtral/modeling_mixtral.py
src/transformers/models/mixtral/modeling_mixtral.py
+2
-2
src/transformers/models/persimmon/modeling_persimmon.py
src/transformers/models/persimmon/modeling_persimmon.py
+2
-2
src/transformers/models/qwen2/modeling_qwen2.py
src/transformers/models/qwen2/modeling_qwen2.py
+2
-2
src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
+2
-2
src/transformers/models/stablelm/modeling_stablelm.py
src/transformers/models/stablelm/modeling_stablelm.py
+2
-2
src/transformers/models/starcoder2/modeling_starcoder2.py
src/transformers/models/starcoder2/modeling_starcoder2.py
+2
-2
No files found.
src/transformers/models/llama/modeling_llama.py
View file @
1f9387d3
...
@@ -1545,7 +1545,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel):
...
@@ -1545,7 +1545,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
LLAMA_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
LLAMA_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1555,7 +1555,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel):
...
@@ -1555,7 +1555,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/mistral/modeling_mistral.py
View file @
1f9387d3
...
@@ -1480,7 +1480,7 @@ class MistralForTokenClassification(MistralPreTrainedModel):
...
@@ -1480,7 +1480,7 @@ class MistralForTokenClassification(MistralPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
MISTRAL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
MISTRAL_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1490,7 +1490,7 @@ class MistralForTokenClassification(MistralPreTrainedModel):
...
@@ -1490,7 +1490,7 @@ class MistralForTokenClassification(MistralPreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/mixtral/modeling_mixtral.py
View file @
1f9387d3
...
@@ -1628,7 +1628,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel):
...
@@ -1628,7 +1628,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
MIXTRAL_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
MIXTRAL_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1638,7 +1638,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel):
...
@@ -1638,7 +1638,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/persimmon/modeling_persimmon.py
View file @
1f9387d3
...
@@ -1051,7 +1051,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel):
...
@@ -1051,7 +1051,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
PERSIMMON_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
PERSIMMON_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1061,7 +1061,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel):
...
@@ -1061,7 +1061,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/qwen2/modeling_qwen2.py
View file @
1f9387d3
...
@@ -1418,7 +1418,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
...
@@ -1418,7 +1418,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
@
add_start_docstrings_to_model_forward
(
QWEN2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
QWEN2_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1428,7 +1428,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
...
@@ -1428,7 +1428,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
View file @
1f9387d3
...
@@ -1614,7 +1614,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
...
@@ -1614,7 +1614,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
@
add_start_docstrings_to_model_forward
(
QWEN2MOE_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
QWEN2MOE_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1624,7 +1624,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
...
@@ -1624,7 +1624,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/stablelm/modeling_stablelm.py
View file @
1f9387d3
...
@@ -1427,7 +1427,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel):
...
@@ -1427,7 +1427,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
STABLELM_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
STABLELM_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1437,7 +1437,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel):
...
@@ -1437,7 +1437,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
src/transformers/models/starcoder2/modeling_starcoder2.py
View file @
1f9387d3
...
@@ -1402,7 +1402,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel):
...
@@ -1402,7 +1402,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel):
@
add_start_docstrings_to_model_forward
(
STARCODER2_INPUTS_DOCSTRING
)
@
add_start_docstrings_to_model_forward
(
STARCODER2_INPUTS_DOCSTRING
)
def
forward
(
def
forward
(
self
,
self
,
input_ids
:
torch
.
LongTensor
=
None
,
input_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
position_ids
:
Optional
[
torch
.
LongTensor
]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
past_key_values
:
Optional
[
List
[
torch
.
FloatTensor
]]
=
None
,
...
@@ -1412,7 +1412,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel):
...
@@ -1412,7 +1412,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel):
output_attentions
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
,
Sequence
ClassifierOutput
WithPast
]:
)
->
Union
[
Tuple
,
Token
ClassifierOutput
]:
r
"""
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment