Unverified Commit 1f9387d3 authored by Kevin Hu's avatar Kevin Hu Committed by GitHub
Browse files

Fix typing errors in `Qwen2ForTokenClassification` (#31440)

* Update modeling_qwen2.py

* Fix llama

* More fixes
parent 9ba9369a
...@@ -1545,7 +1545,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel): ...@@ -1545,7 +1545,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel):
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1555,7 +1555,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel): ...@@ -1555,7 +1555,7 @@ class LlamaForTokenClassification(LlamaPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1480,7 +1480,7 @@ class MistralForTokenClassification(MistralPreTrainedModel): ...@@ -1480,7 +1480,7 @@ class MistralForTokenClassification(MistralPreTrainedModel):
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1490,7 +1490,7 @@ class MistralForTokenClassification(MistralPreTrainedModel): ...@@ -1490,7 +1490,7 @@ class MistralForTokenClassification(MistralPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1628,7 +1628,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel): ...@@ -1628,7 +1628,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel):
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1638,7 +1638,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel): ...@@ -1638,7 +1638,7 @@ class MixtralForTokenClassification(MixtralPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1051,7 +1051,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel): ...@@ -1051,7 +1051,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel):
@add_start_docstrings_to_model_forward(PERSIMMON_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(PERSIMMON_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1061,7 +1061,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel): ...@@ -1061,7 +1061,7 @@ class PersimmonForTokenClassification(PersimmonPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1418,7 +1418,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel): ...@@ -1418,7 +1418,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1428,7 +1428,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel): ...@@ -1428,7 +1428,7 @@ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1614,7 +1614,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel): ...@@ -1614,7 +1614,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1624,7 +1624,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel): ...@@ -1624,7 +1624,7 @@ class Qwen2MoeForTokenClassification(Qwen2MoePreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1427,7 +1427,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel): ...@@ -1427,7 +1427,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel):
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1437,7 +1437,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel): ...@@ -1437,7 +1437,7 @@ class StableLmForTokenClassification(StableLmPreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
...@@ -1402,7 +1402,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel): ...@@ -1402,7 +1402,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel):
@add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
...@@ -1412,7 +1412,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel): ...@@ -1412,7 +1412,7 @@ class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel):
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment