"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "f497f564bb76697edab09184a252fc1b1a326d1e"
Unverified Commit 1dfc11e9 authored by João Gustavo A. Amorim's avatar João Gustavo A. Amorim Committed by GitHub
Browse files

complete the type annotations for config parameters (#16263)

parent bb3a1d34
......@@ -147,7 +147,7 @@ class PatchEmbeddings(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT
class DeiTSelfAttention(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
......@@ -213,7 +213,7 @@ class DeiTSelfOutput(nn.Module):
layernorm applied before each block.
"""
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -228,7 +228,7 @@ class DeiTSelfOutput(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT
class DeiTAttention(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
self.attention = DeiTSelfAttention(config)
self.output = DeiTSelfOutput(config)
......@@ -268,7 +268,7 @@ class DeiTAttention(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT
class DeiTIntermediate(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
......@@ -286,7 +286,7 @@ class DeiTIntermediate(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT
class DeiTOutput(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -304,7 +304,7 @@ class DeiTOutput(nn.Module):
class DeiTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
......@@ -345,7 +345,7 @@ class DeiTLayer(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT
class DeiTEncoder(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: DeiTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)])
......@@ -553,7 +553,7 @@ class DeiTModel(DeiTPreTrainedModel):
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT
class DeiTPooler(nn.Module):
def __init__(self, config):
def __init__(self, config: DeiTConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
......
......@@ -388,7 +388,7 @@ class ViltSelfOutput(nn.Module):
layernorm applied before each block.
"""
def __init__(self, config) -> None:
def __init__(self, config: ViltConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -437,7 +437,7 @@ class ViltAttention(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Vilt
class ViltIntermediate(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViltConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
......@@ -455,7 +455,7 @@ class ViltIntermediate(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Vilt
class ViltOutput(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViltConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......
......@@ -77,7 +77,7 @@ class ViTEmbeddings(nn.Module):
"""
def __init__(self, config, use_mask_token: bool = False) -> None:
def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
......@@ -192,7 +192,7 @@ class PatchEmbeddings(nn.Module):
class ViTSelfAttention(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
......@@ -257,7 +257,7 @@ class ViTSelfOutput(nn.Module):
layernorm applied before each block.
"""
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -271,7 +271,7 @@ class ViTSelfOutput(nn.Module):
class ViTAttention(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.attention = ViTSelfAttention(config)
self.output = ViTSelfOutput(config)
......@@ -310,7 +310,7 @@ class ViTAttention(nn.Module):
class ViTIntermediate(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
......@@ -327,7 +327,7 @@ class ViTIntermediate(nn.Module):
class ViTOutput(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -344,7 +344,7 @@ class ViTOutput(nn.Module):
class ViTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
......@@ -384,7 +384,7 @@ class ViTLayer(nn.Module):
class ViTEncoder(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)])
......@@ -595,7 +595,7 @@ class ViTModel(ViTPreTrainedModel):
class ViTPooler(nn.Module):
def __init__(self, config):
def __init__(self, config: ViTConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
......@@ -614,7 +614,7 @@ class ViTPooler(nn.Module):
VIT_START_DOCSTRING,
)
class ViTForMaskedImageModeling(ViTPreTrainedModel):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__(config)
self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True)
......@@ -724,7 +724,7 @@ class ViTForMaskedImageModeling(ViTPreTrainedModel):
VIT_START_DOCSTRING,
)
class ViTForImageClassification(ViTPreTrainedModel):
def __init__(self, config) -> None:
def __init__(self, config: ViTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
......
......@@ -134,7 +134,7 @@ class ViTMAEForPreTrainingOutput(ModelOutput):
attentions: Optional[Tuple[torch.FloatTensor]] = None
# copied from transformers.models.vit.modeling_vit.to_2tuple
# copied from transformers.models.vit.modeling_vit.to_2tuple ViT->ViTMAE
def to_2tuple(x):
if isinstance(x, collections.abc.Iterable):
return x
......@@ -316,9 +316,9 @@ class PatchEmbeddings(nn.Module):
return x
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention ViT->ViTMAE
class ViTMAESelfAttention(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
......@@ -384,7 +384,7 @@ class ViTMAESelfOutput(nn.Module):
layernorm applied before each block.
"""
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -399,7 +399,7 @@ class ViTMAESelfOutput(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTMAE
class ViTMAEAttention(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
self.attention = ViTMAESelfAttention(config)
self.output = ViTMAESelfOutput(config)
......@@ -437,9 +437,9 @@ class ViTMAEAttention(nn.Module):
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->ViTMAE
class ViTMAEIntermediate(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
......@@ -455,9 +455,9 @@ class ViTMAEIntermediate(nn.Module):
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTOutput
# Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->ViTMAE
class ViTMAEOutput(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
......@@ -475,7 +475,7 @@ class ViTMAEOutput(nn.Module):
class ViTMAELayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
......@@ -516,7 +516,7 @@ class ViTMAELayer(nn.Module):
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTMAE
class ViTMAEEncoder(nn.Module):
def __init__(self, config) -> None:
def __init__(self, config: ViTMAEConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([ViTMAELayer(config) for _ in range(config.num_hidden_layers)])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment