"deploy/vscode:/vscode.git/clone" did not exist on "a8960021edff00054e507a66bf9aa58b088a3c5e"
Commit 1dc9b3c7 authored by Julien Chaumond's avatar Julien Chaumond
Browse files

Fixes #3877

parent dd9d483d
...@@ -8,7 +8,7 @@ There is a growing field of study concerned with investigating the inner working ...@@ -8,7 +8,7 @@ There is a growing field of study concerned with investigating the inner working
* Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650 * Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
* What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341 * What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to help people access the inner representations, mainly adapted from the great work of Paul Michel (https://arxiv.org/abs/1905.10650): In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to help people access the inner representations, mainly adapted from the great work of Paul Michel (https://arxiv.org/abs/1905.10650):
* accessing all the hidden-states of BERT/GPT/GPT-2, * accessing all the hidden-states of BERT/GPT/GPT-2,
......
...@@ -30,10 +30,17 @@ from torch.utils.data import DataLoader, SequentialSampler, Subset ...@@ -30,10 +30,17 @@ from torch.utils.data import DataLoader, SequentialSampler, Subset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm from tqdm import tqdm
from run_glue import ALL_MODELS, MODEL_CLASSES, load_and_cache_examples, set_seed from transformers import (
from transformers import glue_compute_metrics as compute_metrics AutoConfig,
from transformers import glue_output_modes as output_modes AutoModelForSequenceClassification,
from transformers import glue_processors as processors AutoTokenizer,
DefaultDataCollator,
GlueDataset,
glue_compute_metrics,
glue_output_modes,
glue_processors,
set_seed,
)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -64,7 +71,7 @@ def compute_heads_importance( ...@@ -64,7 +71,7 @@ def compute_heads_importance(
- head importance scores according to http://arxiv.org/abs/1905.10650 - head importance scores according to http://arxiv.org/abs/1905.10650
""" """
# Prepare our tensors # Prepare our tensors
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device) head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
...@@ -75,14 +82,12 @@ def compute_heads_importance( ...@@ -75,14 +82,12 @@ def compute_heads_importance(
labels = None labels = None
tot_tokens = 0.0 tot_tokens = 0.0
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch) for k, v in inputs.items():
input_ids, input_mask, segment_ids, label_ids = batch inputs[k] = v.to(args.device)
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
outputs = model( outputs = model(**inputs, head_mask=head_mask)
input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids, head_mask=head_mask
)
loss, logits, all_attentions = ( loss, logits, all_attentions = (
outputs[0], outputs[0],
outputs[1], outputs[1],
...@@ -92,7 +97,7 @@ def compute_heads_importance( ...@@ -92,7 +97,7 @@ def compute_heads_importance(
if compute_entropy: if compute_entropy:
for layer, attn in enumerate(all_attentions): for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1) masked_entropy = entropy(attn.detach()) * inputs["attention_mask"].float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
if compute_importance: if compute_importance:
...@@ -101,12 +106,12 @@ def compute_heads_importance( ...@@ -101,12 +106,12 @@ def compute_heads_importance(
# Also store our logits/labels if we want to compute metrics afterwards # Also store our logits/labels if we want to compute metrics afterwards
if preds is None: if preds is None:
preds = logits.detach().cpu().numpy() preds = logits.detach().cpu().numpy()
labels = label_ids.detach().cpu().numpy() labels = inputs["labels"].detach().cpu().numpy()
else: else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0) labels = np.append(labels, inputs["labels"].detach().cpu().numpy(), axis=0)
tot_tokens += input_mask.float().detach().sum().data tot_tokens += inputs["attention_mask"].float().detach().sum().data
# Normalize # Normalize
attn_entropy /= tot_tokens attn_entropy /= tot_tokens
...@@ -145,7 +150,7 @@ def mask_heads(args, model, eval_dataloader): ...@@ -145,7 +150,7 @@ def mask_heads(args, model, eval_dataloader):
""" """
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
original_score = compute_metrics(args.task_name, preds, labels)[args.metric_name] original_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance) new_head_mask = torch.ones_like(head_importance)
...@@ -174,7 +179,7 @@ def mask_heads(args, model, eval_dataloader): ...@@ -174,7 +179,7 @@ def mask_heads(args, model, eval_dataloader):
args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
) )
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(args.task_name, preds, labels)[args.metric_name] current_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
logger.info( logger.info(
"Masking: current score: %f, remaning heads %d (%.1f percents)", "Masking: current score: %f, remaning heads %d (%.1f percents)",
current_score, current_score,
...@@ -200,7 +205,7 @@ def prune_heads(args, model, eval_dataloader, head_mask): ...@@ -200,7 +205,7 @@ def prune_heads(args, model, eval_dataloader, head_mask):
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
) )
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(args.task_name, preds, labels)[args.metric_name] score_masking = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters()) original_num_params = sum(p.numel() for p in model.parameters())
...@@ -214,7 +219,7 @@ def prune_heads(args, model, eval_dataloader, head_mask): ...@@ -214,7 +219,7 @@ def prune_heads(args, model, eval_dataloader, head_mask):
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None
) )
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(args.task_name, preds, labels)[args.metric_name] score_pruning = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time new_time = datetime.now() - before_time
logger.info( logger.info(
...@@ -242,14 +247,14 @@ def main(): ...@@ -242,14 +247,14 @@ def main():
default=None, default=None,
type=str, type=str,
required=True, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), help="Path to pretrained model or model identifier from huggingface.co/models",
) )
parser.add_argument( parser.add_argument(
"--task_name", "--task_name",
default=None, default=None,
type=str, type=str,
required=True, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), help="The name of the task to train selected in the list: " + ", ".join(glue_processors.keys()),
) )
parser.add_argument( parser.add_argument(
"--output_dir", "--output_dir",
...@@ -274,7 +279,7 @@ def main(): ...@@ -274,7 +279,7 @@ def main():
) )
parser.add_argument( parser.add_argument(
"--cache_dir", "--cache_dir",
default="", default=None,
type=str, type=str,
help="Where do you want to store the pre-trained models downloaded from s3", help="Where do you want to store the pre-trained models downloaded from s3",
) )
...@@ -350,48 +355,40 @@ def main(): ...@@ -350,48 +355,40 @@ def main():
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
# Set seeds # Set seeds
set_seed(args) set_seed(args.seed)
# Prepare GLUE task # Prepare GLUE task
args.task_name = args.task_name.lower() args.task_name = args.task_name.lower()
if args.task_name not in processors: if args.task_name not in glue_processors:
raise ValueError("Task not found: %s" % (args.task_name)) raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]() processor = glue_processors[args.task_name]()
args.output_mode = output_modes[args.task_name] args.output_mode = glue_output_modes[args.task_name]
label_list = processor.get_labels() label_list = processor.get_labels()
num_labels = len(label_list) num_labels = len(label_list)
# Load pretrained model and tokenizer # Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]: #
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab # Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
args.model_type = "" config = AutoConfig.from_pretrained(
for key in MODEL_CLASSES:
if key in args.model_name_or_path.lower():
args.model_type = key # take the first match in model types
break
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path, args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, num_labels=num_labels,
finetuning_task=args.task_name, finetuning_task=args.task_name,
output_attentions=True, output_attentions=True,
cache_dir=args.cache_dir if args.cache_dir else None, cache_dir=args.cache_dir,
) )
tokenizer = tokenizer_class.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir,
cache_dir=args.cache_dir if args.cache_dir else None,
) )
model = model_class.from_pretrained( model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path, args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path), from_tf=bool(".ckpt" in args.model_name_or_path),
config=config, config=config,
cache_dir=args.cache_dir if args.cache_dir else None, cache_dir=args.cache_dir,
) )
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training # Distributed and parallel training
model.to(args.device) model.to(args.device)
if args.local_rank != -1: if args.local_rank != -1:
...@@ -402,15 +399,18 @@ def main(): ...@@ -402,15 +399,18 @@ def main():
model = torch.nn.DataParallel(model) model = torch.nn.DataParallel(model)
# Print/save training arguments # Print/save training arguments
os.makedirs(args.output_dir, exist_ok=True)
torch.save(args, os.path.join(args.output_dir, "run_args.bin")) torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
logger.info("Training/evaluation parameters %s", args) logger.info("Training/evaluation parameters %s", args)
# Prepare dataset for the GLUE task # Prepare dataset for the GLUE task
eval_data = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True) eval_dataset = GlueDataset(args, tokenizer=tokenizer, evaluate=True, local_rank=args.local_rank)
if args.data_subset > 0: if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data))))) eval_dataset = Subset(eval_dataset, list(range(min(args.data_subset, len(eval_dataset)))))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data) eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, collate_fn=DefaultDataCollator().collate_batch
)
# Compute head entropy and importance score # Compute head entropy and importance score
compute_heads_importance(args, model, eval_dataloader) compute_heads_importance(args, model, eval_dataloader)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment