Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1dbc1440
Unverified
Commit
1dbc1440
authored
Jul 25, 2023
by
Xiaoke Huang
Committed by
GitHub
Jul 25, 2023
Browse files
Fix: repeat per sample for SAM image embeddings (#25074)
Repeat per sample for SAM image embeddings
parent
cb8abee5
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4 additions
and
4 deletions
+4
-4
src/transformers/models/sam/modeling_sam.py
src/transformers/models/sam/modeling_sam.py
+2
-2
src/transformers/models/sam/modeling_tf_sam.py
src/transformers/models/sam/modeling_tf_sam.py
+2
-2
No files found.
src/transformers/models/sam/modeling_sam.py
View file @
1dbc1440
...
@@ -507,8 +507,8 @@ class SamMaskDecoder(nn.Module):
...
@@ -507,8 +507,8 @@ class SamMaskDecoder(nn.Module):
# Expand per-image data in batch direction to be per-point
# Expand per-image data in batch direction to be per-point
image_embeddings
=
image_embeddings
+
dense_prompt_embeddings
image_embeddings
=
image_embeddings
+
dense_prompt_embeddings
image_embeddings
=
image_embeddings
.
repeat
(
point_batch_size
,
1
,
1
,
1
)
image_embeddings
=
image_embeddings
.
repeat
_interleave
(
point_batch_size
,
0
)
image_positional_embeddings
=
image_positional_embeddings
.
repeat
(
point_batch_size
,
1
,
1
,
1
)
image_positional_embeddings
=
image_positional_embeddings
.
repeat
_interleave
(
point_batch_size
,
0
)
# Run the transformer, image_positional_embedding are consumed
# Run the transformer, image_positional_embedding are consumed
point_embedding
,
image_embeddings
,
attentions
=
self
.
transformer
(
point_embedding
,
image_embeddings
,
attentions
=
self
.
transformer
(
...
...
src/transformers/models/sam/modeling_tf_sam.py
View file @
1dbc1440
...
@@ -517,8 +517,8 @@ class TFSamMaskDecoder(tf.keras.layers.Layer):
...
@@ -517,8 +517,8 @@ class TFSamMaskDecoder(tf.keras.layers.Layer):
point_embeddings
=
tf
.
cast
(
tokens
,
self
.
iou_token
.
dtype
)
point_embeddings
=
tf
.
cast
(
tokens
,
self
.
iou_token
.
dtype
)
image_embeddings
=
image_embeddings
+
dense_prompt_embeddings
image_embeddings
=
image_embeddings
+
dense_prompt_embeddings
image_embeddings
=
tf
.
tile
(
image_embeddings
,
[
point_batch_size
,
1
,
1
,
1
]
)
image_embeddings
=
tf
.
repeat
(
image_embeddings
,
point_batch_size
,
axis
=
0
)
image_positional_embeddings
=
tf
.
tile
(
image_positional_embeddings
,
[
point_batch_size
,
1
,
1
,
1
]
)
image_positional_embeddings
=
tf
.
repeat
(
image_positional_embeddings
,
point_batch_size
,
axis
=
0
)
point_embedding
,
image_embeddings
,
attentions
=
self
.
transformer
(
point_embedding
,
image_embeddings
,
attentions
=
self
.
transformer
(
point_embeddings
=
point_embeddings
,
point_embeddings
=
point_embeddings
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment