"...lm-evaluation-harness.git" did not exist on "ef429f65de7bd46707ed2324f99bb20eee6b416b"
Unverified Commit 1c39974a authored by Bo Zheng's avatar Bo Zheng Committed by GitHub
Browse files

Add Qwen2MoE (#29377)



* add support for qwen2 MoE models

* update docs

* add support for qwen2 MoE models

* update docs

* update model name & test

* update readme

* update class names & readme & model_doc of Qwen2MoE.

* update architecture name

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fix style

* fix test when there are sparse and non sparse layers

* fixup

* Update README.md
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* fixup

* add archive back

* add support for qwen2 MoE models

* update docs

* update model name & test

* update readme

* update class names & readme & model_doc of Qwen2MoE.

* update architecture name

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fixup

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* fix style

* fix test when there are sparse and non sparse layers

* fixup

* add archive back

* fix integration test

* fixup

---------
Co-authored-by: default avatarbozheng-hit <dsoul0621@gmail.com>
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
parent 8e08acad
...@@ -184,6 +184,7 @@ from . import ( ...@@ -184,6 +184,7 @@ from . import (
pvt_v2, pvt_v2,
qdqbert, qdqbert,
qwen2, qwen2,
qwen2_moe,
rag, rag,
realm, realm,
reformer, reformer,
......
...@@ -195,6 +195,7 @@ CONFIG_MAPPING_NAMES = OrderedDict( ...@@ -195,6 +195,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("pvt_v2", "PvtV2Config"), ("pvt_v2", "PvtV2Config"),
("qdqbert", "QDQBertConfig"), ("qdqbert", "QDQBertConfig"),
("qwen2", "Qwen2Config"), ("qwen2", "Qwen2Config"),
("qwen2_moe", "Qwen2MoeConfig"),
("rag", "RagConfig"), ("rag", "RagConfig"),
("realm", "RealmConfig"), ("realm", "RealmConfig"),
("reformer", "ReformerConfig"), ("reformer", "ReformerConfig"),
...@@ -467,6 +468,7 @@ MODEL_NAMES_MAPPING = OrderedDict( ...@@ -467,6 +468,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("pvt_v2", "PVTv2"), ("pvt_v2", "PVTv2"),
("qdqbert", "QDQBert"), ("qdqbert", "QDQBert"),
("qwen2", "Qwen2"), ("qwen2", "Qwen2"),
("qwen2_moe", "Qwen2MoE"),
("rag", "RAG"), ("rag", "RAG"),
("realm", "REALM"), ("realm", "REALM"),
("reformer", "Reformer"), ("reformer", "Reformer"),
......
...@@ -182,6 +182,7 @@ MODEL_MAPPING_NAMES = OrderedDict( ...@@ -182,6 +182,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("pvt_v2", "PvtV2Model"), ("pvt_v2", "PvtV2Model"),
("qdqbert", "QDQBertModel"), ("qdqbert", "QDQBertModel"),
("qwen2", "Qwen2Model"), ("qwen2", "Qwen2Model"),
("qwen2_moe", "Qwen2MoeModel"),
("reformer", "ReformerModel"), ("reformer", "ReformerModel"),
("regnet", "RegNetModel"), ("regnet", "RegNetModel"),
("rembert", "RemBertModel"), ("rembert", "RemBertModel"),
...@@ -467,6 +468,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict( ...@@ -467,6 +468,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("prophetnet", "ProphetNetForCausalLM"), ("prophetnet", "ProphetNetForCausalLM"),
("qdqbert", "QDQBertLMHeadModel"), ("qdqbert", "QDQBertLMHeadModel"),
("qwen2", "Qwen2ForCausalLM"), ("qwen2", "Qwen2ForCausalLM"),
("qwen2_moe", "Qwen2MoeForCausalLM"),
("reformer", "ReformerModelWithLMHead"), ("reformer", "ReformerModelWithLMHead"),
("rembert", "RemBertForCausalLM"), ("rembert", "RemBertForCausalLM"),
("roberta", "RobertaForCausalLM"), ("roberta", "RobertaForCausalLM"),
...@@ -871,6 +873,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict( ...@@ -871,6 +873,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("plbart", "PLBartForSequenceClassification"), ("plbart", "PLBartForSequenceClassification"),
("qdqbert", "QDQBertForSequenceClassification"), ("qdqbert", "QDQBertForSequenceClassification"),
("qwen2", "Qwen2ForSequenceClassification"), ("qwen2", "Qwen2ForSequenceClassification"),
("qwen2_moe", "Qwen2MoeForSequenceClassification"),
("reformer", "ReformerForSequenceClassification"), ("reformer", "ReformerForSequenceClassification"),
("rembert", "RemBertForSequenceClassification"), ("rembert", "RemBertForSequenceClassification"),
("roberta", "RobertaForSequenceClassification"), ("roberta", "RobertaForSequenceClassification"),
......
...@@ -354,6 +354,13 @@ else: ...@@ -354,6 +354,13 @@ else:
"Qwen2TokenizerFast" if is_tokenizers_available() else None, "Qwen2TokenizerFast" if is_tokenizers_available() else None,
), ),
), ),
(
"qwen2_moe",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
("rag", ("RagTokenizer", None)), ("rag", ("RagTokenizer", None)),
("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)), ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
( (
......
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_import_structure = {
"configuration_qwen2_moe": ["QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2MoeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_qwen2_moe"] = [
"Qwen2MoeForCausalLM",
"Qwen2MoeModel",
"Qwen2MoePreTrainedModel",
"Qwen2MoeForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_qwen2_moe import QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2MoeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_qwen2_moe import (
Qwen2MoeForCausalLM,
Qwen2MoeForSequenceClassification,
Qwen2MoeModel,
Qwen2MoePreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Qwen2MoE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"Qwen/Qwen1.5-MoE-A2.7B": "https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B/resolve/main/config.json",
}
class Qwen2MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2MoeModel`]. It is used to instantiate a
Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B").
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2MoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 5632):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_sparse_step (`int`, *optional*, defaults to 1):
The frequency of the MoE layer.
moe_intermediate_size (`int`, *optional*, defaults to 1408):
Intermediate size of the routed expert.
shared_expert_intermediate_size (`int`, *optional*, defaults to 5632):
Intermediate size of the shared expert.
num_experts_per_tok (`int`, *optional*, defaults to 4):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 60):
Number of routed experts.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
```python
>>> from transformers import Qwen2MoeModel, Qwen2MoeConfig
>>> # Initializing a Qwen2MoE style configuration
>>> configuration = Qwen2MoeConfig()
>>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration
>>> model = Qwen2MoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2_moe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=1408,
shared_expert_intermediate_size=5632,
num_experts_per_tok=4,
num_experts=60,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
This diff is collapsed.
...@@ -6939,6 +6939,34 @@ class Qwen2PreTrainedModel(metaclass=DummyObject): ...@@ -6939,6 +6939,34 @@ class Qwen2PreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
class Qwen2MoeForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Qwen2MoeForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Qwen2MoeModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Qwen2MoePreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RagModel(metaclass=DummyObject): class RagModel(metaclass=DummyObject):
_backends = ["torch"] _backends = ["torch"]
......
This diff is collapsed.
...@@ -201,6 +201,7 @@ docs/source/en/model_doc/prophetnet.md ...@@ -201,6 +201,7 @@ docs/source/en/model_doc/prophetnet.md
docs/source/en/model_doc/pvt.md docs/source/en/model_doc/pvt.md
docs/source/en/model_doc/qdqbert.md docs/source/en/model_doc/qdqbert.md
docs/source/en/model_doc/qwen2.md docs/source/en/model_doc/qwen2.md
docs/source/en/model_doc/qwen2_moe.md
docs/source/en/model_doc/rag.md docs/source/en/model_doc/rag.md
docs/source/en/model_doc/realm.md docs/source/en/model_doc/realm.md
docs/source/en/model_doc/reformer.md docs/source/en/model_doc/reformer.md
...@@ -759,6 +760,8 @@ src/transformers/models/qwen2/configuration_qwen2.py ...@@ -759,6 +760,8 @@ src/transformers/models/qwen2/configuration_qwen2.py
src/transformers/models/qwen2/modeling_qwen2.py src/transformers/models/qwen2/modeling_qwen2.py
src/transformers/models/qwen2/tokenization_qwen2.py src/transformers/models/qwen2/tokenization_qwen2.py
src/transformers/models/qwen2/tokenization_qwen2_fast.py src/transformers/models/qwen2/tokenization_qwen2_fast.py
src/transformers/models/qwen2_moe/configuration_qwen2_moe.py
src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
src/transformers/models/rag/configuration_rag.py src/transformers/models/rag/configuration_rag.py
src/transformers/models/rag/modeling_rag.py src/transformers/models/rag/modeling_rag.py
src/transformers/models/rag/modeling_tf_rag.py src/transformers/models/rag/modeling_tf_rag.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment