"vscode:/vscode.git/clone" did not exist on "fe5e7cea4ac9c7b0cca8c33b86a24827e8331311"
Unverified Commit 1b2381c4 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

ImageProcessor - check if input pixel values between 0-255 (#25688)

* Check if pixel values between 0-255 and add doc clarification

* Add missing docstrings

* _is_scale_image -> is_scaled_image

* Spelling is hard

* Tidy up
parent 7a6efe1e
...@@ -96,6 +96,17 @@ def is_batched(img): ...@@ -96,6 +96,17 @@ def is_batched(img):
return False return False
def is_scaled_image(image: np.ndarray) -> bool:
"""
Checks to see whether the pixel values have already been rescaled to [0, 1].
"""
if image.dtype == np.uint8:
return False
# It's possible the image has pixel values in [0, 255] but is of floating type
return np.min(image) >= 0 and np.max(image) <= 1
def make_list_of_images(images, expected_ndims: int = 3) -> List[ImageInput]: def make_list_of_images(images, expected_ndims: int = 3) -> List[ImageInput]:
""" """
Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1. Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1.
......
...@@ -28,6 +28,7 @@ from ...image_utils import ( ...@@ -28,6 +28,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -236,6 +237,11 @@ class BeitImageProcessor(BaseImageProcessor): ...@@ -236,6 +237,11 @@ class BeitImageProcessor(BaseImageProcessor):
"""Preprocesses a single image.""" """Preprocesses a single image."""
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
image = to_numpy_array(image) image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
input_data_format = infer_channel_dimension_format(image) input_data_format = infer_channel_dimension_format(image)
image = self._preprocess( image = self._preprocess(
...@@ -328,7 +334,8 @@ class BeitImageProcessor(BaseImageProcessor): ...@@ -328,7 +334,8 @@ class BeitImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
......
...@@ -32,6 +32,7 @@ from ...image_utils import ( ...@@ -32,6 +32,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -184,7 +185,8 @@ class BitImageProcessor(BaseImageProcessor): ...@@ -184,7 +185,8 @@ class BitImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -270,6 +272,12 @@ class BitImageProcessor(BaseImageProcessor): ...@@ -270,6 +272,12 @@ class BitImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -27,6 +27,7 @@ from ...image_utils import ( ...@@ -27,6 +27,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -176,7 +177,8 @@ class BlipImageProcessor(BaseImageProcessor): ...@@ -176,7 +177,8 @@ class BlipImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -253,6 +255,12 @@ class BlipImageProcessor(BaseImageProcessor): ...@@ -253,6 +255,12 @@ class BlipImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -29,6 +29,7 @@ from ...image_utils import ( ...@@ -29,6 +29,7 @@ from ...image_utils import (
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_batched, is_batched,
is_scaled_image,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
) )
...@@ -387,7 +388,8 @@ class BridgeTowerImageProcessor(BaseImageProcessor): ...@@ -387,7 +388,8 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -469,6 +471,12 @@ class BridgeTowerImageProcessor(BaseImageProcessor): ...@@ -469,6 +471,12 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if do_resize: if do_resize:
images = [ images = [
self.resize( self.resize(
......
...@@ -32,6 +32,7 @@ from ...image_utils import ( ...@@ -32,6 +32,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -182,7 +183,8 @@ class ChineseCLIPImageProcessor(BaseImageProcessor): ...@@ -182,7 +183,8 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -268,6 +270,12 @@ class ChineseCLIPImageProcessor(BaseImageProcessor): ...@@ -268,6 +270,12 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -32,6 +32,7 @@ from ...image_utils import ( ...@@ -32,6 +32,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -183,7 +184,8 @@ class CLIPImageProcessor(BaseImageProcessor): ...@@ -183,7 +184,8 @@ class CLIPImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -269,6 +271,12 @@ class CLIPImageProcessor(BaseImageProcessor): ...@@ -269,6 +271,12 @@ class CLIPImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -42,6 +42,7 @@ from ...image_utils import ( ...@@ -42,6 +42,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_coco_detection_annotations, valid_coco_detection_annotations,
...@@ -1126,7 +1127,8 @@ class ConditionalDetrImageProcessor(BaseImageProcessor): ...@@ -1126,7 +1127,8 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image or batch of images to preprocess. Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys: detection, the annotations should be a dictionary with the following keys:
...@@ -1259,6 +1261,12 @@ class ConditionalDetrImageProcessor(BaseImageProcessor): ...@@ -1259,6 +1261,12 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays # All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -32,6 +32,7 @@ from ...image_utils import ( ...@@ -32,6 +32,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -203,7 +204,8 @@ class ConvNextImageProcessor(BaseImageProcessor): ...@@ -203,7 +204,8 @@ class ConvNextImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -280,6 +282,12 @@ class ConvNextImageProcessor(BaseImageProcessor): ...@@ -280,6 +282,12 @@ class ConvNextImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -42,6 +42,7 @@ from ...image_utils import ( ...@@ -42,6 +42,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_coco_detection_annotations, valid_coco_detection_annotations,
...@@ -1124,7 +1125,8 @@ class DeformableDetrImageProcessor(BaseImageProcessor): ...@@ -1124,7 +1125,8 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image or batch of images to preprocess. Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys: detection, the annotations should be a dictionary with the following keys:
...@@ -1257,6 +1259,12 @@ class DeformableDetrImageProcessor(BaseImageProcessor): ...@@ -1257,6 +1259,12 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays # All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -27,6 +27,7 @@ from ...image_utils import ( ...@@ -27,6 +27,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -180,7 +181,8 @@ class DeiTImageProcessor(BaseImageProcessor): ...@@ -180,7 +181,8 @@ class DeiTImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -258,6 +260,12 @@ class DeiTImageProcessor(BaseImageProcessor): ...@@ -258,6 +260,12 @@ class DeiTImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -40,6 +40,7 @@ from ...image_utils import ( ...@@ -40,6 +40,7 @@ from ...image_utils import (
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_batched, is_batched,
is_scaled_image,
to_numpy_array, to_numpy_array,
valid_coco_detection_annotations, valid_coco_detection_annotations,
valid_coco_panoptic_annotations, valid_coco_panoptic_annotations,
...@@ -796,7 +797,8 @@ class DetaImageProcessor(BaseImageProcessor): ...@@ -796,7 +797,8 @@ class DetaImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image or batch of images to preprocess. Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`List[Dict]` or `List[List[Dict]]`, *optional*): annotations (`List[Dict]` or `List[List[Dict]]`, *optional*):
List of annotations associated with the image or batch of images. If annotionation is for object List of annotations associated with the image or batch of images. If annotionation is for object
detection, the annotations should be a dictionary with the following keys: detection, the annotations should be a dictionary with the following keys:
...@@ -921,6 +923,12 @@ class DetaImageProcessor(BaseImageProcessor): ...@@ -921,6 +923,12 @@ class DetaImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays # All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -41,6 +41,7 @@ from ...image_utils import ( ...@@ -41,6 +41,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_coco_detection_annotations, valid_coco_detection_annotations,
...@@ -1096,7 +1097,8 @@ class DetrImageProcessor(BaseImageProcessor): ...@@ -1096,7 +1097,8 @@ class DetrImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image or batch of images to preprocess. Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys: detection, the annotations should be a dictionary with the following keys:
...@@ -1229,6 +1231,12 @@ class DetrImageProcessor(BaseImageProcessor): ...@@ -1229,6 +1231,12 @@ class DetrImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays # All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -33,6 +33,7 @@ from ...image_utils import ( ...@@ -33,6 +33,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -319,7 +320,8 @@ class DonutImageProcessor(BaseImageProcessor): ...@@ -319,7 +320,8 @@ class DonutImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -407,6 +409,12 @@ class DonutImageProcessor(BaseImageProcessor): ...@@ -407,6 +409,12 @@ class DonutImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -29,6 +29,7 @@ from ...image_utils import ( ...@@ -29,6 +29,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
is_torch_available, is_torch_available,
is_torch_tensor, is_torch_tensor,
make_list_of_images, make_list_of_images,
...@@ -230,7 +231,8 @@ class DPTImageProcessor(BaseImageProcessor): ...@@ -230,7 +231,8 @@ class DPTImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -305,6 +307,12 @@ class DPTImageProcessor(BaseImageProcessor): ...@@ -305,6 +307,12 @@ class DPTImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -32,6 +32,7 @@ from ...image_utils import ( ...@@ -32,6 +32,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_batched, is_batched,
is_scaled_image,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
) )
...@@ -179,7 +180,8 @@ class EfficientFormerImageProcessor(BaseImageProcessor): ...@@ -179,7 +180,8 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -256,6 +258,12 @@ class EfficientFormerImageProcessor(BaseImageProcessor): ...@@ -256,6 +258,12 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -27,6 +27,7 @@ from ...image_utils import ( ...@@ -27,6 +27,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -231,7 +232,8 @@ class EfficientNetImageProcessor(BaseImageProcessor): ...@@ -231,7 +232,8 @@ class EfficientNetImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -315,6 +317,12 @@ class EfficientNetImageProcessor(BaseImageProcessor): ...@@ -315,6 +317,12 @@ class EfficientNetImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -30,6 +30,7 @@ from ...image_utils import ( ...@@ -30,6 +30,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -414,6 +415,12 @@ class FlavaImageProcessor(BaseImageProcessor): ...@@ -414,6 +415,12 @@ class FlavaImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
image = to_numpy_array(image) image = to_numpy_array(image)
if is_scaled_image(image) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image) input_data_format = infer_channel_dimension_format(image)
...@@ -481,7 +488,8 @@ class FlavaImageProcessor(BaseImageProcessor): ...@@ -481,7 +488,8 @@ class FlavaImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
......
...@@ -26,6 +26,7 @@ from ...image_utils import ( ...@@ -26,6 +26,7 @@ from ...image_utils import (
PILImageResampling, PILImageResampling,
get_image_size, get_image_size,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -137,7 +138,8 @@ class GLPNImageProcessor(BaseImageProcessor): ...@@ -137,7 +138,8 @@ class GLPNImageProcessor(BaseImageProcessor):
Args: Args:
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`): images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
The image or images to preprocess. Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`. Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
size_divisor (`int`, *optional*, defaults to `self.size_divisor`): size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
...@@ -182,6 +184,12 @@ class GLPNImageProcessor(BaseImageProcessor): ...@@ -182,6 +184,12 @@ class GLPNImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(img) for img in images] images = [to_numpy_array(img) for img in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
...@@ -25,6 +25,7 @@ from ...image_utils import ( ...@@ -25,6 +25,7 @@ from ...image_utils import (
ImageInput, ImageInput,
PILImageResampling, PILImageResampling,
infer_channel_dimension_format, infer_channel_dimension_format,
is_scaled_image,
make_list_of_images, make_list_of_images,
to_numpy_array, to_numpy_array,
valid_images, valid_images,
...@@ -190,7 +191,8 @@ class ImageGPTImageProcessor(BaseImageProcessor): ...@@ -190,7 +191,8 @@ class ImageGPTImageProcessor(BaseImageProcessor):
Args: Args:
images (`ImageInput`): images (`ImageInput`):
Image to preprocess. Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`): do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image. Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`): size (`Dict[str, int]`, *optional*, defaults to `self.size`):
...@@ -250,6 +252,12 @@ class ImageGPTImageProcessor(BaseImageProcessor): ...@@ -250,6 +252,12 @@ class ImageGPTImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays. # All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images] images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_normalize:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If you wish to do this, "
"make sure to set `do_normalize` to `False` and that pixel values are between [-1, 1].",
)
if input_data_format is None: if input_data_format is None:
# We assume that all images have the same channel dimension format. # We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0]) input_data_format = infer_channel_dimension_format(images[0])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment