Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
185259c2
Unverified
Commit
185259c2
authored
Nov 06, 2020
by
Stefan Schweter
Committed by
GitHub
Nov 06, 2020
Browse files
[model_cards] Update Italian BERT models and introduce new Italian XXL ELECTRA model
🎉
(#8343)
parent
34bbf60b
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
404 additions
and
56 deletions
+404
-56
model_cards/dbmdz/bert-base-italian-cased/README.md
model_cards/dbmdz/bert-base-italian-cased/README.md
+46
-14
model_cards/dbmdz/bert-base-italian-uncased/README.md
model_cards/dbmdz/bert-base-italian-uncased/README.md
+46
-14
model_cards/dbmdz/bert-base-italian-xxl-cased/README.md
model_cards/dbmdz/bert-base-italian-xxl-cased/README.md
+46
-14
model_cards/dbmdz/bert-base-italian-xxl-uncased/README.md
model_cards/dbmdz/bert-base-italian-xxl-uncased/README.md
+46
-14
model_cards/dbmdz/electra-base-italian-xxl-cased-discriminator/README.md
...dz/electra-base-italian-xxl-cased-discriminator/README.md
+110
-0
model_cards/dbmdz/electra-base-italian-xxl-cased-generator/README.md
.../dbmdz/electra-base-italian-xxl-cased-generator/README.md
+110
-0
No files found.
model_cards/dbmdz/bert-base-italian-cased/README.md
View file @
185259c2
---
language
:
it
license
:
mit
datasets
:
-
wikipedia
---
# 🤗 + 📚 dbmdz BERT models
# 🤗 + 📚 dbmdz BERT
and ELECTRA
models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT models 🎉
Library open sources Italian BERT
and ELECTRA
models 🎉
# Italian BERT
...
...
@@ -22,23 +24,35 @@ For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the
[
OSCAR corpus
](
https://traces1.inria.fr/oscar/
)
.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in
`config.json`
. However, the model is working and all
evaluations were done under those circumstances.
See
[
this issue
](
https://github.com/dbmdz/berts/issues/7
)
for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[
BERTurk
](
https://github.com/stefan-it/turkish-bert/tree/master/electra
)
.
## Model weights
Currently only PyTorch-
[
Transformers
](
https://github.com/huggingface/transformers
)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| --------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-discriminator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-generator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt
)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[
this repository
](
https://github.com/stefan-it/
fine-tuned-berts-seq
)
.
[
this repository
](
https://github.com/stefan-it/
italian-bertelectra
)
.
## Usage
...
...
@@ -47,8 +61,11 @@ With Transformers >= 2.3 our Italian BERT models can be loaded like:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model_name
=
"dbmdz/bert-base-italian-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the (recommended) Italian XXL BERT models, just use:
...
...
@@ -56,8 +73,23 @@ To load the (recommended) Italian XXL BERT models, just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model_name
=
"dbmdz/bert-base-italian-xxl-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModelWithLMHead
.
from_pretrained
(
model_name
)
```
# Huggingface model hub
...
...
@@ -66,7 +98,7 @@ All models are available on the [Huggingface model hub](https://huggingface.co/d
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
For questions about our BERT
/ELECTRA
models just open an issue
[
here
](
https://github.com/dbmdz/berts/issues/new
)
🤗
# Acknowledgments
...
...
model_cards/dbmdz/bert-base-italian-uncased/README.md
View file @
185259c2
---
language
:
it
license
:
mit
datasets
:
-
wikipedia
---
# 🤗 + 📚 dbmdz BERT models
# 🤗 + 📚 dbmdz BERT
and ELECTRA
models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT models 🎉
Library open sources Italian BERT
and ELECTRA
models 🎉
# Italian BERT
...
...
@@ -22,23 +24,35 @@ For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the
[
OSCAR corpus
](
https://traces1.inria.fr/oscar/
)
.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in
`config.json`
. However, the model is working and all
evaluations were done under those circumstances.
See
[
this issue
](
https://github.com/dbmdz/berts/issues/7
)
for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[
BERTurk
](
https://github.com/stefan-it/turkish-bert/tree/master/electra
)
.
## Model weights
Currently only PyTorch-
[
Transformers
](
https://github.com/huggingface/transformers
)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| --------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-discriminator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-generator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt
)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[
this repository
](
https://github.com/stefan-it/
fine-tuned-berts-seq
)
.
[
this repository
](
https://github.com/stefan-it/
italian-bertelectra
)
.
## Usage
...
...
@@ -47,8 +61,11 @@ With Transformers >= 2.3 our Italian BERT models can be loaded like:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model_name
=
"dbmdz/bert-base-italian-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the (recommended) Italian XXL BERT models, just use:
...
...
@@ -56,8 +73,23 @@ To load the (recommended) Italian XXL BERT models, just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model_name
=
"dbmdz/bert-base-italian-xxl-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModelWithLMHead
.
from_pretrained
(
model_name
)
```
# Huggingface model hub
...
...
@@ -66,7 +98,7 @@ All models are available on the [Huggingface model hub](https://huggingface.co/d
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
For questions about our BERT
/ELECTRA
models just open an issue
[
here
](
https://github.com/dbmdz/berts/issues/new
)
🤗
# Acknowledgments
...
...
model_cards/dbmdz/bert-base-italian-xxl-cased/README.md
View file @
185259c2
---
language
:
it
license
:
mit
datasets
:
-
wikipedia
---
# 🤗 + 📚 dbmdz BERT models
# 🤗 + 📚 dbmdz BERT
and ELECTRA
models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT models 🎉
Library open sources Italian BERT
and ELECTRA
models 🎉
# Italian BERT
...
...
@@ -22,23 +24,35 @@ For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the
[
OSCAR corpus
](
https://traces1.inria.fr/oscar/
)
.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in
`config.json`
. However, the model is working and all
evaluations were done under those circumstances.
See
[
this issue
](
https://github.com/dbmdz/berts/issues/7
)
for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[
BERTurk
](
https://github.com/stefan-it/turkish-bert/tree/master/electra
)
.
## Model weights
Currently only PyTorch-
[
Transformers
](
https://github.com/huggingface/transformers
)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| --------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-discriminator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-generator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt
)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[
this repository
](
https://github.com/stefan-it/
fine-tuned-berts-seq
)
.
[
this repository
](
https://github.com/stefan-it/
italian-bertelectra
)
.
## Usage
...
...
@@ -47,8 +61,11 @@ With Transformers >= 2.3 our Italian BERT models can be loaded like:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model_name
=
"dbmdz/bert-base-italian-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the (recommended) Italian XXL BERT models, just use:
...
...
@@ -56,8 +73,23 @@ To load the (recommended) Italian XXL BERT models, just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model_name
=
"dbmdz/bert-base-italian-xxl-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModelWithLMHead
.
from_pretrained
(
model_name
)
```
# Huggingface model hub
...
...
@@ -66,7 +98,7 @@ All models are available on the [Huggingface model hub](https://huggingface.co/d
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
For questions about our BERT
/ELECTRA
models just open an issue
[
here
](
https://github.com/dbmdz/berts/issues/new
)
🤗
# Acknowledgments
...
...
model_cards/dbmdz/bert-base-italian-xxl-uncased/README.md
View file @
185259c2
---
language
:
it
license
:
mit
datasets
:
-
wikipedia
---
# 🤗 + 📚 dbmdz BERT models
# 🤗 + 📚 dbmdz BERT
and ELECTRA
models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT models 🎉
Library open sources Italian BERT
and ELECTRA
models 🎉
# Italian BERT
...
...
@@ -22,23 +24,35 @@ For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the
[
OSCAR corpus
](
https://traces1.inria.fr/oscar/
)
.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in
`config.json`
. However, the model is working and all
evaluations were done under those circumstances.
See
[
this issue
](
https://github.com/dbmdz/berts/issues/7
)
for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[
BERTurk
](
https://github.com/stefan-it/turkish-bert/tree/master/electra
)
.
## Model weights
Currently only PyTorch-
[
Transformers
](
https://github.com/huggingface/transformers
)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| --------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-discriminator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-generator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt
)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[
this repository
](
https://github.com/stefan-it/
fine-tuned-berts-seq
)
.
[
this repository
](
https://github.com/stefan-it/
italian-bertelectra
)
.
## Usage
...
...
@@ -47,8 +61,11 @@ With Transformers >= 2.3 our Italian BERT models can be loaded like:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-cased"
)
model_name
=
"dbmdz/bert-base-italian-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the (recommended) Italian XXL BERT models, just use:
...
...
@@ -56,8 +73,23 @@ To load the (recommended) Italian XXL BERT models, just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model
=
AutoModel
.
from_pretrained
(
"dbmdz/bert-base-italian-xxl-cased"
)
model_name
=
"dbmdz/bert-base-italian-xxl-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModelWithLMHead
.
from_pretrained
(
model_name
)
```
# Huggingface model hub
...
...
@@ -66,7 +98,7 @@ All models are available on the [Huggingface model hub](https://huggingface.co/d
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
For questions about our BERT
/ELECTRA
models just open an issue
[
here
](
https://github.com/dbmdz/berts/issues/new
)
🤗
# Acknowledgments
...
...
model_cards/dbmdz/electra-base-italian-xxl-cased-discriminator/README.md
0 → 100644
View file @
185259c2
---
language
:
it
license
:
mit
datasets
:
-
wikipedia
---
# 🤗 + 📚 dbmdz BERT and ELECTRA models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models 🎉
# Italian BERT
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the
[
OPUS corpora
](
http://opus.nlpl.eu/
)
collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the
[
OSCAR corpus
](
https://traces1.inria.fr/oscar/
)
.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in
`config.json`
. However, the model is working and all
evaluations were done under those circumstances.
See
[
this issue
](
https://github.com/dbmdz/berts/issues/7
)
for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[
BERTurk
](
https://github.com/stefan-it/turkish-bert/tree/master/electra
)
.
## Model weights
Currently only PyTorch-
[
Transformers
](
https://github.com/huggingface/transformers
)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-discriminator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-generator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt
)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[
this repository
](
https://github.com/stefan-it/italian-bertelectra
)
.
## Usage
With Transformers >= 2.3 our Italian BERT models can be loaded like:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/bert-base-italian-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the (recommended) Italian XXL BERT models, just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/bert-base-italian-xxl-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModelWithLMHead
.
from_pretrained
(
model_name
)
```
# Huggingface model hub
All models are available on the
[
Huggingface model hub
](
https://huggingface.co/dbmdz
)
.
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT/ELECTRA models just open an issue
[
here
](
https://github.com/dbmdz/berts/issues/new
)
🤗
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC ❤️
Thanks to the generous support from the
[
Hugging Face
](
https://huggingface.co/
)
team,
it is possible to download both cased and uncased models from their S3 storage 🤗
model_cards/dbmdz/electra-base-italian-xxl-cased-generator/README.md
0 → 100644
View file @
185259c2
---
language
:
it
license
:
mit
datasets
:
-
wikipedia
---
# 🤗 + 📚 dbmdz BERT and ELECTRA models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources Italian BERT and ELECTRA models 🎉
# Italian BERT
The source data for the Italian BERT model consists of a recent Wikipedia dump and
various texts from the
[
OPUS corpora
](
http://opus.nlpl.eu/
)
collection. The final
training corpus has a size of 13GB and 2,050,057,573 tokens.
For sentence splitting, we use NLTK (faster compared to spacy).
Our cased and uncased models are training with an initial sequence length of 512
subwords for ~2-3M steps.
For the XXL Italian models, we use the same training data from OPUS and extend
it with data from the Italian part of the
[
OSCAR corpus
](
https://traces1.inria.fr/oscar/
)
.
Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.
Note: Unfortunately, a wrong vocab size was used when training the XXL models.
This explains the mismatch of the "real" vocab size of 31102, compared to the
vocab size specified in
`config.json`
. However, the model is working and all
evaluations were done under those circumstances.
See
[
this issue
](
https://github.com/dbmdz/berts/issues/7
)
for more information.
The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch
size of 128. We pretty much following the ELECTRA training procedure as used for
[
BERTurk
](
https://github.com/stefan-it/turkish-bert/tree/master/electra
)
.
## Model weights
Currently only PyTorch-
[
Transformers
](
https://github.com/huggingface/transformers
)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ---------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------
|
`dbmdz/bert-base-italian-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-cased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt
)
|
`dbmdz/bert-base-italian-xxl-uncased`
|
[
`config.json`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-discriminator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt
)
|
`dbmdz/electra-base-italian-xxl-cased-generator`
|
[
`config.json`
](
https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json
)
•
[
`pytorch_model.bin`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin
)
•
[
`vocab.txt`
](
https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt
)
## Results
For results on downstream tasks like NER or PoS tagging, please refer to
[
this repository
](
https://github.com/stefan-it/italian-bertelectra
)
.
## Usage
With Transformers >= 2.3 our Italian BERT models can be loaded like:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/bert-base-italian-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the (recommended) Italian XXL BERT models, just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/bert-base-italian-xxl-cased"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModel
.
from_pretrained
(
model_name
)
```
To load the Italian XXL ELECTRA model (discriminator), just use:
```
python
from
transformers
import
AutoModel
,
AutoTokenizer
model_name
=
"dbmdz/electra-base-italian-xxl-cased-discriminator"
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
model
=
AutoModelWithLMHead
.
from_pretrained
(
model_name
)
```
# Huggingface model hub
All models are available on the
[
Huggingface model hub
](
https://huggingface.co/dbmdz
)
.
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT/ELECTRA models just open an issue
[
here
](
https://github.com/dbmdz/berts/issues/new
)
🤗
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC ❤️
Thanks to the generous support from the
[
Hugging Face
](
https://huggingface.co/
)
team,
it is possible to download both cased and uncased models from their S3 storage 🤗
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment