Unverified Commit 17d7aec8 authored by IMvision12's avatar IMvision12 Committed by GitHub
Browse files

Update modeling_layoutlmv3.py (#19753)

parent a4038666
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
import collections import collections
import math import math
from typing import Optional, Tuple, Union
import torch import torch
import torch.nn as nn import torch.nn as nn
...@@ -1061,19 +1062,19 @@ class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel): ...@@ -1061,19 +1062,19 @@ class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel):
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
bbox=None, bbox: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
pixel_values=None, pixel_values: Optional[torch.LongTensor] = None,
): ) -> Union[Tuple, TokenClassifierOutput]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
...@@ -1172,20 +1173,20 @@ class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel): ...@@ -1172,20 +1173,20 @@ class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel):
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions=None, start_positions: Optional[torch.LongTensor] = None,
end_positions=None, end_positions: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
bbox=None, bbox: Optional[torch.LongTensor] = None,
pixel_values=None, pixel_values: Optional[torch.LongTensor] = None,
): ) -> Union[Tuple, QuestionAnsweringModelOutput]:
r""" r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss. Labels for position (index) of the start of the labelled span for computing the token classification loss.
...@@ -1304,19 +1305,19 @@ class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel): ...@@ -1304,19 +1305,19 @@ class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel):
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward( def forward(
self, self,
input_ids=None, input_ids: Optional[torch.LongTensor] = None,
attention_mask=None, attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids=None, token_type_ids: Optional[torch.LongTensor] = None,
position_ids=None, position_ids: Optional[torch.LongTensor] = None,
head_mask=None, head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds=None, inputs_embeds: Optional[torch.FloatTensor] = None,
labels=None, labels: Optional[torch.LongTensor] = None,
output_attentions=None, output_attentions: Optional[bool] = None,
output_hidden_states=None, output_hidden_states: Optional[bool] = None,
return_dict=None, return_dict: Optional[bool] = None,
bbox=None, bbox: Optional[torch.LongTensor] = None,
pixel_values=None, pixel_values: Optional[torch.LongTensor] = None,
): ) -> Union[Tuple, SequenceClassifierOutput]:
""" """
Returns: Returns:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment