Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1798e98e
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "01f0fd0babaf9cda382e00f4e939013e0c837815"
Commit
1798e98e
authored
Mar 20, 2019
by
Matthew Carrigan
Browse files
Added final TODOs
parent
c64c2fc4
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
8 additions
and
6 deletions
+8
-6
examples/lm_finetuning/finetune_on_pregenerated.py
examples/lm_finetuning/finetune_on_pregenerated.py
+1
-5
examples/lm_finetuning/pregenerate_training_data.py
examples/lm_finetuning/pregenerate_training_data.py
+7
-1
No files found.
examples/lm_finetuning/finetune_on_pregenerated.py
View file @
1798e98e
...
@@ -54,7 +54,7 @@ def convert_example_to_features(example, tokenizer, max_seq_length):
...
@@ -54,7 +54,7 @@ def convert_example_to_features(example, tokenizer, max_seq_length):
class
PregeneratedDataset
(
Dataset
):
class
PregeneratedDataset
(
Dataset
):
def
__init__
(
self
,
training_path
,
epoch
,
tokenizer
,
num_data_epochs
):
def
__init__
(
self
,
training_path
,
epoch
,
tokenizer
,
num_data_epochs
):
# TODO Add an option to memmap the training data
# TODO Add an option to memmap
and shuffle
the training data
if needed (see note in pregenerate_training_data)
self
.
vocab
=
tokenizer
.
vocab
self
.
vocab
=
tokenizer
.
vocab
self
.
tokenizer
=
tokenizer
self
.
tokenizer
=
tokenizer
self
.
epoch
=
epoch
self
.
epoch
=
epoch
...
@@ -101,10 +101,6 @@ class PregeneratedDataset(Dataset):
...
@@ -101,10 +101,6 @@ class PregeneratedDataset(Dataset):
torch
.
tensor
(
self
.
is_nexts
[
item
].
astype
(
np
.
int64
)))
torch
.
tensor
(
self
.
is_nexts
[
item
].
astype
(
np
.
int64
)))
# TODO 2: Test it's all working
# TODO 3: Add a README (can you do that with subfolders?)
def
main
():
def
main
():
parser
=
ArgumentParser
()
parser
=
ArgumentParser
()
parser
.
add_argument
(
'--pregenerated_data'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
'--pregenerated_data'
,
type
=
Path
,
required
=
True
)
...
...
examples/lm_finetuning/pregenerate_training_data.py
View file @
1798e98e
...
@@ -220,6 +220,13 @@ def main():
...
@@ -220,6 +220,13 @@ def main():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
# TODO Add a low-memory / multiprocessing path for very large datasets
# In this path documents would be stored in a shelf after being tokenized, and multiple processes would convert
# those docs into training examples that would be written out on the fly. This would avoid the need to keep
# the whole training set in memory and would speed up dataset creation at the cost of code complexity.
# In addition, the finetuning script would need to be modified to store the training epochs as memmaped arrays,
# and to shuffle them by importing to the rows of the array in a random order.
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
BertTokenizer
.
from_pretrained
(
args
.
bert_model
,
do_lower_case
=
args
.
do_lower_case
)
vocab_list
=
list
(
tokenizer
.
vocab
.
keys
())
vocab_list
=
list
(
tokenizer
.
vocab
.
keys
())
with
args
.
corpus_path
.
open
()
as
f
:
with
args
.
corpus_path
.
open
()
as
f
:
...
@@ -232,7 +239,6 @@ def main():
...
@@ -232,7 +239,6 @@ def main():
doc
=
[]
doc
=
[]
else
:
else
:
tokens
=
tokenizer
.
tokenize
(
line
)
tokens
=
tokenizer
.
tokenize
(
line
)
# TODO If the sentence is longer than max_len, do we split it in the middle? That's probably a bad idea
doc
.
append
(
tokens
)
doc
.
append
(
tokens
)
args
.
save_dir
.
mkdir
(
exist_ok
=
True
)
args
.
save_dir
.
mkdir
(
exist_ok
=
True
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment