Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1689aea7
"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "170fcaa6041d99cba5ad921eaab81b268a6ffc66"
Unverified
Commit
1689aea7
authored
Jul 26, 2023
by
amyeroberts
Committed by
GitHub
Jul 26, 2023
Browse files
Move center_crop to BaseImageProcessor (#25122)
parent
659829b6
Changes
18
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
29 additions
and
419 deletions
+29
-419
src/transformers/image_processing_utils.py
src/transformers/image_processing_utils.py
+25
-1
src/transformers/models/beit/image_processing_beit.py
src/transformers/models/beit/image_processing_beit.py
+1
-23
src/transformers/models/bit/image_processing_bit.py
src/transformers/models/bit/image_processing_bit.py
+0
-25
src/transformers/models/chinese_clip/image_processing_chinese_clip.py
...mers/models/chinese_clip/image_processing_chinese_clip.py
+0
-23
src/transformers/models/clip/image_processing_clip.py
src/transformers/models/clip/image_processing_clip.py
+0
-25
src/transformers/models/deit/image_processing_deit.py
src/transformers/models/deit/image_processing_deit.py
+1
-25
src/transformers/models/efficientformer/image_processing_efficientformer.py
...odels/efficientformer/image_processing_efficientformer.py
+0
-25
src/transformers/models/efficientnet/image_processing_efficientnet.py
...mers/models/efficientnet/image_processing_efficientnet.py
+1
-25
src/transformers/models/flava/image_processing_flava.py
src/transformers/models/flava/image_processing_flava.py
+1
-25
src/transformers/models/levit/image_processing_levit.py
src/transformers/models/levit/image_processing_levit.py
+0
-24
src/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py
...mers/models/mobilenet_v1/image_processing_mobilenet_v1.py
+0
-23
src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py
...mers/models/mobilenet_v2/image_processing_mobilenet_v2.py
+0
-25
src/transformers/models/mobilevit/image_processing_mobilevit.py
...ansformers/models/mobilevit/image_processing_mobilevit.py
+0
-25
src/transformers/models/poolformer/image_processing_poolformer.py
...sformers/models/poolformer/image_processing_poolformer.py
+0
-25
src/transformers/models/tvlt/image_processing_tvlt.py
src/transformers/models/tvlt/image_processing_tvlt.py
+0
-25
src/transformers/models/videomae/image_processing_videomae.py
...transformers/models/videomae/image_processing_videomae.py
+0
-25
src/transformers/models/vit_hybrid/image_processing_vit_hybrid.py
...sformers/models/vit_hybrid/image_processing_vit_hybrid.py
+0
-25
src/transformers/models/vivit/image_processing_vivit.py
src/transformers/models/vivit/image_processing_vivit.py
+0
-25
No files found.
src/transformers/image_processing_utils.py
View file @
1689aea7
...
@@ -23,7 +23,7 @@ import numpy as np
...
@@ -23,7 +23,7 @@ import numpy as np
from
.dynamic_module_utils
import
custom_object_save
from
.dynamic_module_utils
import
custom_object_save
from
.feature_extraction_utils
import
BatchFeature
as
BaseBatchFeature
from
.feature_extraction_utils
import
BatchFeature
as
BaseBatchFeature
from
.image_transforms
import
normalize
,
rescale
from
.image_transforms
import
center_crop
,
normalize
,
rescale
from
.image_utils
import
ChannelDimension
from
.image_utils
import
ChannelDimension
from
.utils
import
(
from
.utils
import
(
IMAGE_PROCESSOR_NAME
,
IMAGE_PROCESSOR_NAME
,
...
@@ -571,6 +571,30 @@ class BaseImageProcessor(ImageProcessingMixin):
...
@@ -571,6 +571,30 @@ class BaseImageProcessor(ImageProcessingMixin):
"""
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The size dictionary must have keys 'height' and 'width'. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
VALID_SIZE_DICT_KEYS
=
({
"height"
,
"width"
},
{
"shortest_edge"
},
{
"shortest_edge"
,
"longest_edge"
},
{
"longest_edge"
})
VALID_SIZE_DICT_KEYS
=
({
"height"
,
"width"
},
{
"shortest_edge"
},
{
"shortest_edge"
,
"longest_edge"
},
{
"longest_edge"
})
...
...
src/transformers/models/beit/image_processing_beit.py
View file @
1689aea7
...
@@ -20,7 +20,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
...
@@ -20,7 +20,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -167,28 +167,6 @@ class BeitImageProcessor(BaseImageProcessor):
...
@@ -167,28 +167,6 @@ class BeitImageProcessor(BaseImageProcessor):
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
,
default_to_square
=
True
,
param_name
=
"size"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
reduce_label
(
self
,
label
:
ImageInput
)
->
np
.
ndarray
:
def
reduce_label
(
self
,
label
:
ImageInput
)
->
np
.
ndarray
:
label
=
to_numpy_array
(
label
)
label
=
to_numpy_array
(
label
)
# Avoid using underflow conversion
# Avoid using underflow conversion
...
...
src/transformers/models/bit/image_processing_bit.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
...
@@ -147,30 +146,6 @@ class BitImageProcessor(BaseImageProcessor):
...
@@ -147,30 +146,6 @@ class BitImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/chinese_clip/image_processing_chinese_clip.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
...
@@ -147,28 +146,6 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
...
@@ -147,28 +146,6 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
)
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/clip/image_processing_clip.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
...
@@ -147,30 +146,6 @@ class CLIPImageProcessor(BaseImageProcessor):
...
@@ -147,30 +146,6 @@ class CLIPImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/deit/image_processing_deit.py
View file @
1689aea7
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -135,30 +135,6 @@ class DeiTImageProcessor(BaseImageProcessor):
...
@@ -135,30 +135,6 @@ class DeiTImageProcessor(BaseImageProcessor):
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(crop_size["height"], crop_size["width"])`. If the input size is smaller than
`crop_size` along any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The size dictionary must have keys 'height' and 'width'. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/efficientformer/image_processing_efficientformer.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -149,30 +148,6 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
...
@@ -149,30 +148,6 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got
{
size
.
keys
()
}
"
)
return
resize
(
image
,
size
=
size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/efficientnet/image_processing_efficientnet.py
View file @
1689aea7
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
rescale
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -144,30 +144,6 @@ class EfficientNetImageProcessor(BaseImageProcessor):
...
@@ -144,30 +144,6 @@ class EfficientNetImageProcessor(BaseImageProcessor):
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(crop_size["height"], crop_size["width"])`. If the input size is smaller than
`crop_size` along any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The size dictionary must have keys 'height' and 'width'. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
def
rescale
(
self
,
self
,
image
:
np
.
ndarray
,
image
:
np
.
ndarray
,
...
...
src/transformers/models/flava/image_processing_flava.py
View file @
1689aea7
...
@@ -22,7 +22,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
...
@@ -22,7 +22,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_STD
,
OPENAI_CLIP_STD
,
...
@@ -359,30 +359,6 @@ class FlavaImageProcessor(BaseImageProcessor):
...
@@ -359,30 +359,6 @@ class FlavaImageProcessor(BaseImageProcessor):
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The size dictionary must contain 'height' and 'width' keys. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
map_pixels
(
self
,
image
:
np
.
ndarray
)
->
np
.
ndarray
:
def
map_pixels
(
self
,
image
:
np
.
ndarray
)
->
np
.
ndarray
:
return
(
1
-
2
*
LOGIT_LAPLACE_EPS
)
*
image
+
LOGIT_LAPLACE_EPS
return
(
1
-
2
*
LOGIT_LAPLACE_EPS
)
*
image
+
LOGIT_LAPLACE_EPS
...
...
src/transformers/models/levit/image_processing_levit.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -159,29 +158,6 @@ class LevitImageProcessor(BaseImageProcessor):
...
@@ -159,29 +158,6 @@ class LevitImageProcessor(BaseImageProcessor):
image
,
size
=
(
size_dict
[
"height"
],
size_dict
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
image
,
size
=
(
size_dict
[
"height"
],
size_dict
[
"width"
]),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Dict `{"height": int, "width": int}` specifying the size of the output image after cropping.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"Size dict must have keys 'height' and 'width'. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -140,28 +139,6 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
...
@@ -140,28 +139,6 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -144,30 +143,6 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
...
@@ -144,30 +143,6 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The `size` parameter must contain the keys `height` and `width`. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/mobilevit/image_processing_mobilevit.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
flip_channel_order
,
flip_channel_order
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
...
@@ -136,30 +135,6 @@ class MobileViTImageProcessor(BaseImageProcessor):
...
@@ -136,30 +135,6 @@ class MobileViTImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to size `(size["height], size["width"])`. If the input size is smaller than `size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The `size` dictionary must contain the keys `height` and `width`. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
flip_channel_order
(
def
flip_channel_order
(
self
,
image
:
np
.
ndarray
,
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
self
,
image
:
np
.
ndarray
,
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
)
->
np
.
ndarray
:
)
->
np
.
ndarray
:
...
...
src/transformers/models/poolformer/image_processing_poolformer.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -193,30 +192,6 @@ class PoolFormerImageProcessor(BaseImageProcessor):
...
@@ -193,30 +192,6 @@ class PoolFormerImageProcessor(BaseImageProcessor):
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"size must contain 'height' and 'width' as keys. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/tvlt/image_processing_tvlt.py
View file @
1689aea7
...
@@ -19,7 +19,6 @@ import numpy as np
...
@@ -19,7 +19,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -182,30 +181,6 @@ class TvltImageProcessor(BaseImageProcessor):
...
@@ -182,30 +181,6 @@ class TvltImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got
{
size
.
keys
()
}
"
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"Size must have 'height' and 'width' as keys. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
_preprocess_image
(
def
_preprocess_image
(
self
,
self
,
image
:
ImageInput
,
image
:
ImageInput
,
...
...
src/transformers/models/videomae/image_processing_videomae.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
...
@@ -161,30 +160,6 @@ class VideoMAEImageProcessor(BaseImageProcessor):
...
@@ -161,30 +160,6 @@ class VideoMAEImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got
{
size
.
keys
()
}
"
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"Size must have 'height' and 'width' as keys. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
_preprocess_image
(
def
_preprocess_image
(
self
,
self
,
image
:
ImageInput
,
image
:
ImageInput
,
...
...
src/transformers/models/vit_hybrid/image_processing_vit_hybrid.py
View file @
1689aea7
...
@@ -20,7 +20,6 @@ import numpy as np
...
@@ -20,7 +20,6 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
resize
,
resize
,
...
@@ -147,30 +146,6 @@ class ViTHybridImageProcessor(BaseImageProcessor):
...
@@ -147,30 +146,6 @@ class ViTHybridImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
output_size
=
get_resize_output_image_size
(
image
,
size
=
size
[
"shortest_edge"
],
default_to_square
=
False
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/vivit/image_processing_vivit.py
View file @
1689aea7
...
@@ -22,7 +22,6 @@ from transformers.utils.generic import TensorType
...
@@ -22,7 +22,6 @@ from transformers.utils.generic import TensorType
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
rescale
,
rescale
,
resize
,
resize
,
...
@@ -168,30 +167,6 @@ class VivitImageProcessor(BaseImageProcessor):
...
@@ -168,30 +167,6 @@ class VivitImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got
{
size
.
keys
()
}
"
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
self
,
image
:
np
.
ndarray
,
size
:
Dict
[
str
,
int
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size
=
get_size_dict
(
size
)
if
"height"
not
in
size
or
"width"
not
in
size
:
raise
ValueError
(
f
"Size must have 'height' and 'width' as keys. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
def
rescale
(
self
,
self
,
image
:
np
.
ndarray
,
image
:
np
.
ndarray
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment