Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
14b3aa3b
Commit
14b3aa3b
authored
Nov 08, 2019
by
Louis MARTIN
Committed by
Julien Chaumond
Nov 16, 2019
Browse files
Add tokenization_camembert.py
parent
74ce8de7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
120 additions
and
0 deletions
+120
-0
transformers/tokenization_camembert.py
transformers/tokenization_camembert.py
+120
-0
No files found.
transformers/tokenization_camembert.py
0 → 100644
View file @
14b3aa3b
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for Camembert model."""
from
__future__
import
(
absolute_import
,
division
,
print_function
,
unicode_literals
)
import
sentencepiece
as
spm
from
transformers.tokenization_utils
import
PreTrainedTokenizer
class
CamembertTokenizer
(
PreTrainedTokenizer
):
"""
Adapted from RobertaTokenizer and XLNetTokenizer
SentencePiece based tokenizer. Peculiarities:
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
"""
vocab_files_names
=
{
'vocab_file'
:
None
}
def
__init__
(
self
,
vocab_file
,
bos_token
=
"<s>"
,
eos_token
=
"</s>"
,
sep_token
=
"</s>"
,
cls_token
=
"<s>"
,
unk_token
=
"<unk>"
,
pad_token
=
'<pad>'
,
mask_token
=
'<mask>'
,
**
kwargs
):
super
(
CamembertTokenizer
,
self
).
__init__
(
max_len
=
512
,
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
sep_token
=
sep_token
,
cls_token
=
cls_token
,
pad_token
=
pad_token
,
mask_token
=
mask_token
,
**
kwargs
)
self
.
max_len_single_sentence
=
self
.
max_len
-
2
# take into account special tokens
self
.
max_len_sentences_pair
=
self
.
max_len
-
4
# take into account special tokens
self
.
sp_model
=
spm
.
SentencePieceProcessor
()
self
.
sp_model
.
Load
(
str
(
vocab_file
))
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
self
.
fairseq_tokens_to_ids
=
{
'<s>NOTUSED'
:
0
,
'<pad>'
:
1
,
'</s>NOTUSED'
:
2
,
'<unk>'
:
3
}
self
.
fairseq_offset
=
len
(
self
.
fairseq_tokens_to_ids
)
self
.
fairseq_tokens_to_ids
[
'<mask>'
]
=
len
(
self
.
sp_model
)
+
len
(
self
.
fairseq_tokens_to_ids
)
self
.
fairseq_ids_to_tokens
=
{
v
:
k
for
k
,
v
in
self
.
fairseq_tokens_to_ids
.
items
()}
def
build_inputs_with_special_tokens
(
self
,
token_ids_0
,
token_ids_1
=
None
):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens.
A RoBERTa sequence has the following format:
single sequence: <s> X </s>
pair of sequences: <s> A </s></s> B </s>
"""
if
token_ids_1
is
None
:
return
[
self
.
cls_token_id
]
+
token_ids_0
+
[
self
.
sep_token_id
]
cls
=
[
self
.
cls_token_id
]
sep
=
[
self
.
sep_token_id
]
return
cls
+
token_ids_0
+
sep
+
sep
+
token_ids_1
+
sep
def
get_special_tokens_mask
(
self
,
token_ids_0
,
token_ids_1
=
None
,
already_has_special_tokens
=
False
):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
Args:
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
"""
if
already_has_special_tokens
:
if
token_ids_1
is
not
None
:
raise
ValueError
(
"You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model."
)
return
list
(
map
(
lambda
x
:
1
if
x
in
[
self
.
sep_token_id
,
self
.
cls_token_id
]
else
0
,
token_ids_0
))
if
token_ids_1
is
None
:
return
[
1
]
+
([
0
]
*
len
(
token_ids_0
))
+
[
1
]
return
[
1
]
+
([
0
]
*
len
(
token_ids_0
))
+
[
1
,
1
]
+
([
0
]
*
len
(
token_ids_1
))
+
[
1
]
def
create_token_type_ids_from_sequences
(
self
,
token_ids_0
,
token_ids_1
=
None
):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A RoBERTa sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
if token_ids_1 is None, only returns the first portion of the mask (0's).
"""
sep
=
[
self
.
sep_token_id
]
cls
=
[
self
.
cls_token_id
]
if
token_ids_1
is
None
:
return
len
(
cls
+
token_ids_0
+
sep
)
*
[
0
]
return
len
(
cls
+
token_ids_0
+
sep
+
sep
)
*
[
0
]
+
len
(
token_ids_1
+
sep
)
*
[
1
]
@
property
def
vocab_size
(
self
):
return
self
.
fairseq_offset
+
len
(
self
.
sp_model
)
def
_tokenize
(
self
,
text
):
return
self
.
sp_model
.
EncodeAsPieces
(
text
)
def
_convert_token_to_id
(
self
,
token
):
""" Converts a token (str/unicode) in an id using the vocab. """
if
token
in
self
.
fairseq_tokens_to_ids
:
return
self
.
fairseq_tokens_to_ids
[
token
]
return
self
.
fairseq_offset
+
self
.
sp_model
.
PieceToId
(
token
)
def
_convert_id_to_token
(
self
,
index
):
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
if
index
in
self
.
fairseq_ids_to_tokens
:
return
self
.
fairseq_ids_to_tokens
[
index
]
return
self
.
sp_model
.
IdToPiece
(
index
-
self
.
fairseq_offset
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment