Unverified Commit 149cb0cc authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Add `token` arugment in example scripts (#25172)



* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent c6a8768d
......@@ -22,6 +22,7 @@ import logging
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from functools import partial
......@@ -182,15 +183,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -389,6 +396,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_captioning", model_args, data_args, framework="flax")
......@@ -448,7 +461,7 @@ def main():
cache_dir=model_args.cache_dir,
keep_in_memory=False,
data_dir=data_args.data_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -465,7 +478,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -475,18 +488,18 @@ def main():
model_args.model_name_or_path,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
image_processor = AutoImageProcessor.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer.pad_token = tokenizer.convert_ids_to_tokens(model.config.pad_token_id)
......
......@@ -26,6 +26,7 @@ import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
......@@ -168,15 +169,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -463,6 +470,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_bart_dlm", model_args, data_args, framework="flax")
......@@ -517,7 +530,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in datasets.keys():
......@@ -526,14 +539,14 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -548,7 +561,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in datasets.keys():
......@@ -557,14 +570,14 @@ def main():
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -576,14 +589,14 @@ def main():
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
raise ValueError(
......@@ -596,13 +609,13 @@ def main():
model_args.config_name,
cache_dir=model_args.cache_dir,
vocab_size=len(tokenizer),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
config = BartConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
......@@ -707,7 +720,7 @@ def main():
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config.vocab_size = len(tokenizer)
......
......@@ -27,6 +27,7 @@ import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
......@@ -169,15 +170,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -334,6 +341,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clm", model_args, data_args, framework="flax")
......@@ -397,7 +410,7 @@ def main():
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
keep_in_memory=False,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in dataset.keys():
......@@ -406,14 +419,14 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
dataset["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -431,7 +444,7 @@ def main():
data_files=data_files,
cache_dir=model_args.cache_dir,
**dataset_args,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in dataset.keys():
......@@ -441,7 +454,7 @@ def main():
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
**dataset_args,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
dataset["train"] = load_dataset(
extension,
......@@ -449,7 +462,7 @@ def main():
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
**dataset_args,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -463,13 +476,13 @@ def main():
config = AutoConfig.from_pretrained(
model_args.config_name,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
......@@ -480,14 +493,14 @@ def main():
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
raise ValueError(
......@@ -501,7 +514,7 @@ def main():
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
model = FlaxAutoModelForCausalLM.from_config(
......
......@@ -26,6 +26,7 @@ import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
......@@ -174,15 +175,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -377,6 +384,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mlm", model_args, data_args, framework="flax")
......@@ -434,7 +447,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in datasets.keys():
......@@ -443,14 +456,14 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -465,7 +478,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in datasets.keys():
......@@ -474,14 +487,14 @@ def main():
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -495,13 +508,13 @@ def main():
config = AutoConfig.from_pretrained(
model_args.config_name,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
......@@ -512,14 +525,14 @@ def main():
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
raise ValueError(
......@@ -638,7 +651,7 @@ def main():
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
model = FlaxAutoModelForMaskedLM.from_config(
......
......@@ -25,6 +25,7 @@ import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
......@@ -168,15 +169,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -504,6 +511,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax")
......@@ -558,7 +571,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in datasets.keys():
......@@ -567,14 +580,14 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -589,7 +602,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in datasets.keys():
......@@ -598,14 +611,14 @@ def main():
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -617,14 +630,14 @@ def main():
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
raise ValueError(
......@@ -637,13 +650,13 @@ def main():
model_args.config_name,
cache_dir=model_args.cache_dir,
vocab_size=len(tokenizer),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
config = T5Config.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
......@@ -738,7 +751,7 @@ def main():
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config.vocab_size = len(tokenizer)
......
......@@ -25,6 +25,7 @@ import os
import random
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from pathlib import Path
......@@ -155,15 +156,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
dtype: Optional[str] = field(
default="float32",
metadata={
......@@ -438,6 +445,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_qa", model_args, data_args, framework="flax")
......@@ -487,7 +500,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
# Loading the dataset from local csv or json file.
......@@ -507,7 +520,7 @@ def main():
data_files=data_files,
field="data",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -520,14 +533,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# endregion
......@@ -874,7 +887,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
)
......
......@@ -24,6 +24,7 @@ import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from functools import partial
......@@ -188,15 +189,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -417,6 +424,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_summarization", model_args, data_args, framework="flax")
......@@ -475,7 +488,7 @@ def main():
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
keep_in_memory=False,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -492,7 +505,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -503,13 +516,13 @@ def main():
config = AutoConfig.from_pretrained(
model_args.config_name,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
......@@ -520,14 +533,14 @@ def main():
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
raise ValueError(
......@@ -541,7 +554,7 @@ def main():
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
model = FlaxAutoModelForSeq2SeqLM.from_config(
......
......@@ -21,6 +21,7 @@ import os
import random
import sys
import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple
......@@ -101,15 +102,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -321,6 +328,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_glue", model_args, data_args, framework="flax")
......@@ -368,7 +381,7 @@ def main():
raw_datasets = load_dataset(
"glue",
data_args.task_name,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
# Loading the dataset from local csv or json file.
......@@ -381,7 +394,7 @@ def main():
raw_datasets = load_dataset(
extension,
data_files=data_files,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -411,17 +424,17 @@ def main():
model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=not model_args.use_slow_tokenizer,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = FlaxAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
config=config,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# Preprocessing the datasets
......
......@@ -21,6 +21,7 @@ import os
import random
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
......@@ -149,15 +150,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -377,6 +384,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_ner", model_args, data_args, framework="flax")
......@@ -422,7 +435,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
# Loading the dataset from local csv or json file.
......@@ -436,7 +449,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -490,7 +503,7 @@ def main():
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
if config.model_type in {"gpt2", "roberta"}:
......@@ -498,7 +511,7 @@ def main():
tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
add_prefix_space=True,
)
else:
......@@ -506,14 +519,14 @@ def main():
tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = FlaxAutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# Preprocessing the datasets
......
......@@ -24,6 +24,7 @@ import logging
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from pathlib import Path
......@@ -159,15 +160,21 @@ class ModelArguments:
)
},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -257,6 +264,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_classification", model_args, data_args, framework="flax")
......@@ -338,7 +351,7 @@ def main():
num_labels=len(train_dataset.classes),
image_size=data_args.image_size,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
......@@ -346,7 +359,7 @@ def main():
num_labels=len(train_dataset.classes),
image_size=data_args.image_size,
cache_dir=model_args.cache_dir,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
......@@ -358,7 +371,7 @@ def main():
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
model = FlaxAutoModelForImageClassification.from_config(
......
......@@ -152,15 +152,21 @@ class ModelArguments:
attention_mask: bool = field(
default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
freeze_feature_extractor: Optional[bool] = field(
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
......@@ -198,6 +204,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_audio_classification", model_args, data_args)
......@@ -250,13 +262,13 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
......@@ -280,7 +292,7 @@ def main():
return_attention_mask=model_args.attention_mask,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# `datasets` takes care of automatically loading and resampling the audio,
......@@ -340,7 +352,7 @@ def main():
finetuning_task="audio-classification",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path,
......@@ -348,7 +360,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
......
......@@ -26,6 +26,7 @@ Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
......@@ -86,13 +87,19 @@ class ModelArguments:
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
freeze_vision_model: bool = field(
......@@ -235,6 +242,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clip", model_args, data_args)
......@@ -294,7 +307,7 @@ def main():
cache_dir=model_args.cache_dir,
keep_in_memory=False,
data_dir=data_args.data_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -311,7 +324,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -336,14 +349,14 @@ def main():
model_args.image_processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = AutoModel.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
config = model.config
......
......@@ -16,6 +16,7 @@
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
......@@ -142,15 +143,21 @@ class ModelArguments:
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
......@@ -176,6 +183,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_classification", model_args, data_args)
......@@ -229,7 +242,7 @@ def main():
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
task="image-classification",
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -276,7 +289,7 @@ def main():
finetuning_task="image-classification",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path,
......@@ -284,14 +297,14 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
image_processor = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# Define torchvision transforms to be applied to each image.
......
......@@ -16,6 +16,7 @@
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
......@@ -133,13 +134,19 @@ class ModelArguments:
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
mask_ratio: float = field(
......@@ -175,6 +182,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mae", model_args, data_args)
......@@ -224,7 +237,7 @@ def main():
data_args.dataset_config_name,
data_files=data_args.data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# If we don't have a validation split, split off a percentage of train as validation.
......@@ -242,7 +255,7 @@ def main():
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.config_name:
config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs)
......@@ -280,7 +293,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
logger.info("Training new model from scratch")
......
......@@ -16,6 +16,7 @@
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
......@@ -153,13 +154,19 @@ class ModelArguments:
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
image_size: Optional[int] = field(
......@@ -239,6 +246,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mim", model_args, data_args)
......@@ -288,7 +301,7 @@ def main():
data_args.dataset_config_name,
data_files=data_args.data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# If we don't have a validation split, split off a percentage of train as validation.
......@@ -305,7 +318,7 @@ def main():
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.config_name_or_path:
config = AutoConfig.from_pretrained(model_args.config_name_or_path, **config_kwargs)
......@@ -357,7 +370,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
logger.info("Training new model from scratch")
......
......@@ -25,6 +25,7 @@ import logging
import math
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
......@@ -111,15 +112,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
......@@ -238,6 +245,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clm", model_args, data_args)
......@@ -300,7 +313,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
streaming=data_args.streaming,
)
if "validation" not in raw_datasets.keys():
......@@ -309,7 +322,7 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
streaming=data_args.streaming,
)
raw_datasets["train"] = load_dataset(
......@@ -317,7 +330,7 @@ def main():
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
streaming=data_args.streaming,
)
else:
......@@ -339,7 +352,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
**dataset_args,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
......@@ -349,7 +362,7 @@ def main():
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
**dataset_args,
)
raw_datasets["train"] = load_dataset(
......@@ -357,7 +370,7 @@ def main():
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
**dataset_args,
)
......@@ -373,7 +386,7 @@ def main():
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
......@@ -391,7 +404,7 @@ def main():
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
......@@ -415,7 +428,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
torch_dtype=torch_dtype,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
......
......@@ -25,6 +25,7 @@ import logging
import math
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
......@@ -107,15 +108,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
......@@ -238,6 +245,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mlm", model_args, data_args)
......@@ -301,7 +314,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
streaming=data_args.streaming,
)
if "validation" not in raw_datasets.keys():
......@@ -310,7 +323,7 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
streaming=data_args.streaming,
)
raw_datasets["train"] = load_dataset(
......@@ -318,7 +331,7 @@ def main():
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
streaming=data_args.streaming,
)
else:
......@@ -335,7 +348,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
......@@ -345,14 +358,14 @@ def main():
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
......@@ -366,7 +379,7 @@ def main():
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
......@@ -384,7 +397,7 @@ def main():
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
......@@ -403,7 +416,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
else:
......
......@@ -22,6 +22,7 @@ import logging
import math
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
......@@ -95,15 +96,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
......@@ -229,6 +236,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_plm", model_args, data_args)
......@@ -291,7 +304,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
......@@ -299,14 +312,14 @@ def main():
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -325,14 +338,14 @@ def main():
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
......@@ -346,7 +359,7 @@ def main():
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
......@@ -364,7 +377,7 @@ def main():
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.token,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
......@@ -383,7 +396,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
else:
......
......@@ -21,6 +21,7 @@ Fine-tuning the library models for multiple choice.
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
......@@ -79,15 +80,21 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
@dataclass
......@@ -225,6 +232,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", model_args, data_args)
......@@ -292,7 +305,7 @@ def main():
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
# Downloading and loading the swag dataset from the hub.
......@@ -300,7 +313,7 @@ def main():
"swag",
"regular",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -314,14 +327,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,
......@@ -329,7 +342,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# When using your own dataset or a different dataset from swag, you will probably need to change this.
......
......@@ -21,6 +21,7 @@ Fine-tuning the library models for question answering using a slightly adapted v
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
......@@ -79,13 +80,19 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
token: str = field(
default=None,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
......@@ -227,6 +234,12 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_qa", model_args, data_args)
......@@ -289,7 +302,7 @@ def main():
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
else:
data_files = {}
......@@ -308,7 +321,7 @@ def main():
data_files=data_files,
field="data",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
......@@ -322,14 +335,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
model = AutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
......@@ -337,7 +350,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
token=model_args.token,
)
# Tokenizer check: this script requires a fast tokenizer.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment