Unverified Commit 1429b920 authored by Stas Bekman's avatar Stas Bekman Committed by GitHub
Browse files

refactor almost identical tests (#6339)

* refactor almost identical tests

* important to add a clear assert error message

* make the assert error even more descriptive than the original bt
parent 35eb96de
......@@ -86,66 +86,51 @@ class ScheduleInitTest(unittest.TestCase):
optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
num_steps = 10
def assertListAlmostEqual(self, list1, list2, tol):
def assertListAlmostEqual(self, list1, list2, tol, msg=None):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol)
def test_constant_scheduler(self):
scheduler = get_constant_schedule(self.optimizer)
lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [10.0] * self.num_steps
self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = get_constant_schedule(self.optimizer)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_constant_scheduler(self):
scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_linear_scheduler(self):
scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0]
self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_cosine_scheduler(self):
scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0]
self.assertEqual(len(lrs[0]), 1)
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_cosine_hard_restart_scheduler(self):
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10
)
lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0]
self.assertEqual(len(lrs[0]), 1)
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10
)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
self.assertAlmostEqual(a, b, delta=tol, msg=msg)
def test_schedulers(self):
common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
scheds = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0],
),
}
for scheduler_func, data in scheds.items():
kwargs, expected_learning_rates = data
scheduler = scheduler_func(self.optimizer, **kwargs)
lrs_1 = unwrap_schedule(scheduler, self.num_steps)
self.assertEqual(len(lrs_1[0]), 1)
self.assertListAlmostEqual(
[l[0] for l in lrs_1],
expected_learning_rates,
tol=1e-2,
msg=f"failed for {scheduler_func} in normal scheduler",
)
scheduler = scheduler_func(self.optimizer, **kwargs)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual(
[l[0] for l in lrs_1], [l[0] for l in lrs_2], msg=f"failed for {scheduler_func} in save and reload"
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment