Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
11413711
"src/kernels/git@developer.sourcefind.cn:Fzc7075/nunchaku.git" did not exist on "3ef186fd7e4b1f10db9f74b13a21640a3e587010"
Unverified
Commit
11413711
authored
Aug 01, 2022
by
Arthur
Committed by
GitHub
Aug 01, 2022
Browse files
Fix OPT doc tests (#18365)
parent
af1e6b4d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
19 additions
and
22 deletions
+19
-22
src/transformers/models/opt/modeling_opt.py
src/transformers/models/opt/modeling_opt.py
+8
-3
src/transformers/models/opt/modeling_tf_opt.py
src/transformers/models/opt/modeling_tf_opt.py
+11
-19
No files found.
src/transformers/models/opt/modeling_opt.py
View file @
11413711
...
...
@@ -43,6 +43,11 @@ _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE
=
[
1
,
8
,
1024
]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION
=
"ArthurZ/opt-350m-dummy-sc"
_SEQ_CLASS_EXPECTED_LOSS
=
1.71
_SEQ_CLASS_EXPECTED_OUTPUT
=
"'LABEL_0'"
OPT_PRETRAINED_MODEL_ARCHIVE_LIST
=
[
"facebook/opt-125m"
,
...
...
@@ -474,7 +479,6 @@ class OPTDecoder(OPTPreTrainedModel):
Args:
config: OPTConfig
embed_tokens (nn.Embedding): output embedding
"""
def
__init__
(
self
,
config
:
OPTConfig
):
...
...
@@ -1008,10 +1012,11 @@ class OPTForSequenceClassification(OPTPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
OPT_INPUTS_DOCSTRING
)
@
add_code_sample_docstrings
(
processor_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION
,
output_type
=
SequenceClassifierOutputWithPast
,
config_class
=
_CONFIG_FOR_DOC
,
expected_output
=
"'LABEL_0'"
,
expected_loss
=
5.28
,
expected_output
=
_SEQ_CLASS_EXPECTED_OUTPUT
,
expected_loss
=
_SEQ_CLASS_EXPECTED_LOSS
,
)
def
forward
(
self
,
...
...
src/transformers/models/opt/modeling_tf_opt.py
View file @
11413711
...
...
@@ -53,6 +53,9 @@ _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE
=
[
1
,
8
,
1024
]
# Causal LM output
_CAUSAL_LM_EXPECTED_OUTPUT
=
"Hey, are you consciours? Can you talk to me?
\n
I'm not consciours, but I can talk to you."
LARGE_NEGATIVE
=
-
1e8
...
...
@@ -894,6 +897,13 @@ class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
@
unpack_inputs
@
replace_return_docstrings
(
output_type
=
TFCausalLMOutputWithPast
,
config_class
=
_CONFIG_FOR_DOC
)
@
add_code_sample_docstrings
(
processor_class
=
_TOKENIZER_FOR_DOC
,
checkpoint
=
_CHECKPOINT_FOR_DOC
,
output_type
=
TFCausalLMOutputWithPast
,
config_class
=
_CONFIG_FOR_DOC
,
expected_output
=
_CAUSAL_LM_EXPECTED_OUTPUT
,
)
def
call
(
self
,
input_ids
:
Optional
[
TFModelInputType
]
=
None
,
...
...
@@ -964,25 +974,7 @@ class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import GPT2Tokenizer, TFOPTForCausalLM
>>> model = TFOPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="tf")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
"""
output_attentions
=
output_attentions
if
output_attentions
is
not
None
else
self
.
config
.
output_attentions
output_hidden_states
=
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment