"src/kernels/git@developer.sourcefind.cn:Fzc7075/nunchaku.git" did not exist on "3ef186fd7e4b1f10db9f74b13a21640a3e587010"
Unverified Commit 11413711 authored by Arthur's avatar Arthur Committed by GitHub
Browse files

Fix OPT doc tests (#18365)

parent af1e6b4d
......@@ -43,6 +43,11 @@ _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
_SEQ_CLASS_EXPECTED_LOSS = 1.71
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
OPT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/opt-125m",
......@@ -474,7 +479,6 @@ class OPTDecoder(OPTPreTrainedModel):
Args:
config: OPTConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: OPTConfig):
......@@ -1008,10 +1012,11 @@ class OPTForSequenceClassification(OPTPreTrainedModel):
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output="'LABEL_0'",
expected_loss=5.28,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
......
......@@ -53,6 +53,9 @@ _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# Causal LM output
_CAUSAL_LM_EXPECTED_OUTPUT = "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
LARGE_NEGATIVE = -1e8
......@@ -894,6 +897,13 @@ class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
@unpack_inputs
@replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_CAUSAL_LM_EXPECTED_OUTPUT,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
......@@ -964,25 +974,7 @@ class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import GPT2Tokenizer, TFOPTForCausalLM
>>> model = TFOPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="tf")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment