Commit 0c44b119 authored by husein zolkepli's avatar husein zolkepli Committed by Julien Chaumond
Browse files

add bert bahasa readme

parent e99af3b1
---
language: malay
---
# Bahasa BERT Model
Pretrained BERT base language model for Malay and Indonesian.
## Pretraining Corpus
`bert-base-bahasa-cased` model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
1. [dumping wikipedia](https://github.com/huseinzol05/Malaya-Dataset#wikipedia-1).
2. [local instagram](https://github.com/huseinzol05/Malaya-Dataset#instagram).
3. [local twitter](https://github.com/huseinzol05/Malaya-Dataset#twitter-1).
4. [local news](https://github.com/huseinzol05/Malaya-Dataset#public-news).
5. [local parliament text](https://github.com/huseinzol05/Malaya-Dataset#parliament).
6. [local singlish/manglish text](https://github.com/huseinzol05/Malaya-Dataset#singlish-text).
7. [IIUM Confession](https://github.com/huseinzol05/Malaya-Dataset#iium-confession).
8. [Wattpad](https://github.com/huseinzol05/Malaya-Dataset#wattpad).
9. [Academia PDF](https://github.com/huseinzol05/Malaya-Dataset#academia-pdf).
Preprocessing steps can reproduce from here, [Malaya/pretrained-model/preprocess](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/preprocess).
## Pretraining details
- This model was trained using Google BERT's github [repository](https://github.com/google-research/bert) on 3 Titan V100 32GB VRAM.
- All steps can reproduce from here, [Malaya/pretrained-model/bert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/bert).
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import XLNetTokenizer, BertModel
model = BertModel.from_pretrained('huseinzol05/bert-base-bahasa-cased')
tokenizer = XLNetTokenizer.from_pretrained('huseinzol05/bert-base-bahasa-cased')
```
We use [google/sentencepiece](https://github.com/google/sentencepiece) to train the tokenizer, so to use it, need to load from `XLNetTokenizer`.
## Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
## Acknowledgement
Thanks to [Im Big](https://www.facebook.com/imbigofficial/), [LigBlou](https://www.facebook.com/ligblou), [Mesolitica](https://mesolitica.com/) and [KeyReply](https://www.keyreply.com/) for sponsoring AWS, Google and GPU clouds to train BERT for Bahasa.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment