**[`monologg/biobert_v1.1_pubmed`](https://huggingface.co/monologg/biobert_v1.1_pubmed)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py)**
This model is cased.
### Training Parameters
Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb
```bash
BASE_MODEL=monologg/biobert_v1.1_pubmed
python run_squad.py \
--version_2_with_negative\
--model_type albert \
--model_name_or_path$BASE_MODEL\
--output_dir$OUTPUT_MODEL\
--do_eval\
--do_lower_case\
--train_file$SQUAD_DIR/train-v2.0.json \
--predict_file$SQUAD_DIR/dev-v2.0.json \
--per_gpu_train_batch_size 18 \
--per_gpu_eval_batch_size 64 \
--learning_rate 3e-5 \
--num_train_epochs 3.0 \
--max_seq_length 384 \
--doc_stride 128 \
--save_steps 2000 \
--threads 24 \
--warmup_steps 550 \
--gradient_accumulation_steps 1 \
--fp16\
--logging_steps 50 \
--do_train
```
### Evaluation
Evaluation on the dev set. I did not sweep for best threshold.
| | val |
|-------------------|-------------------|
| exact | 75.97068980038743 |
| f1 | 79.37043950121722 |
| total | 11873.0 |
| HasAns_exact | 74.13967611336032 |
| HasAns_f1 | 80.94892513460755 |
| HasAns_total | 5928.0 |
| NoAns_exact | 77.79646761984861 |
| NoAns_f1 | 77.79646761984861 |
| NoAns_total | 5945.0 |
| best_exact | 75.97068980038743 |
| best_exact_thresh | 0.0 |
| best_f1 | 79.37043950121729 |
| best_f1_thresh | 0.0 |
### Usage
See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: