"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "a8e0f664466785b7485132eb5065b36329485c3a"
Unverified Commit 09110577 authored by Younes Belkada's avatar Younes Belkada Committed by GitHub
Browse files

[Vision] fix small nit on `BeitDropPath` layers (#20587)

* fix small nit

* add last file
parent e135a6c9
...@@ -118,8 +118,8 @@ class BeitDropPath(nn.Module): ...@@ -118,8 +118,8 @@ class BeitDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -82,8 +82,8 @@ class ConvNextDropPath(nn.Module): ...@@ -82,8 +82,8 @@ class ConvNextDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -107,8 +107,8 @@ class CvtDropPath(nn.Module): ...@@ -107,8 +107,8 @@ class CvtDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -120,8 +120,8 @@ class Data2VecVisionDropPath(nn.Module): ...@@ -120,8 +120,8 @@ class Data2VecVisionDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -295,8 +295,8 @@ class DinatDropPath(nn.Module): ...@@ -295,8 +295,8 @@ class DinatDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -325,8 +325,8 @@ class DonutSwinDropPath(nn.Module): ...@@ -325,8 +325,8 @@ class DonutSwinDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -82,8 +82,8 @@ class GLPNDropPath(nn.Module): ...@@ -82,8 +82,8 @@ class GLPNDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -285,8 +285,8 @@ class MaskFormerSwinDropPath(nn.Module): ...@@ -285,8 +285,8 @@ class MaskFormerSwinDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -289,8 +289,8 @@ class NatDropPath(nn.Module): ...@@ -289,8 +289,8 @@ class NatDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -79,8 +79,8 @@ class PoolFormerDropPath(nn.Module): ...@@ -79,8 +79,8 @@ class PoolFormerDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -114,8 +114,8 @@ class SegformerDropPath(nn.Module): ...@@ -114,8 +114,8 @@ class SegformerDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -397,8 +397,8 @@ class SwinDropPath(nn.Module): ...@@ -397,8 +397,8 @@ class SwinDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -262,8 +262,8 @@ class Swinv2DropPath(nn.Module): ...@@ -262,8 +262,8 @@ class Swinv2DropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -83,8 +83,8 @@ class VanDropPath(nn.Module): ...@@ -83,8 +83,8 @@ class VanDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
...@@ -381,8 +381,8 @@ class XCLIPDropPath(nn.Module): ...@@ -381,8 +381,8 @@ class XCLIPDropPath(nn.Module):
super().__init__() super().__init__()
self.drop_prob = drop_prob self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor: def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training) return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str: def extra_repr(self) -> str:
return "p={}".format(self.drop_prob) return "p={}".format(self.drop_prob)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment