"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "46ffc28329cdd2710e677fe08a2d4e4cf5379d86"
Unverified Commit 0856a231 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #287 from huggingface/gpt2

Gpt2
parents 3a2f97db ab7f5d29
......@@ -5,8 +5,9 @@
This repository contains op-for-op PyTorch reimplementations, pre-trained models and fine-tuning examples for:
- [Google's BERT model](https://github.com/google-research/bert),
- [OpenAI's GPT model](https://github.com/openai/finetune-transformer-lm), and
- [Google/CMU's Transformer-XL model](https://github.com/kimiyoung/transformer-xl).
- [OpenAI's GPT model](https://github.com/openai/finetune-transformer-lm),
- [Google/CMU's Transformer-XL model](https://github.com/kimiyoung/transformer-xl), and
- [OpenAI's GPT-2 model](https://blog.openai.com/better-language-models/),
These implementations have been tested on several datasets (see the examples) and should match the performances of the associated TensorFlow implementations (e.g. ~91 F1 on SQuAD for BERT, ~88 F1 on RocStories for OpenAI GPT and ~18.3 perplexity on WikiText 103 for the Transformer-XL). You can find more details in the [Examples](#examples) section below.
......@@ -21,6 +22,10 @@ This PyTorch implementation of OpenAI GPT is an adaptation of the [PyTorch imple
**Google/CMU's Transformer-XL** was released together with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](http://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
This PyTorch implementation of Transformer-XL is an adaptation of the original [PyTorch implementation](https://github.com/kimiyoung/transformer-xl) which has been slightly modified to match the performances of the TensforFlow implementation and allow to re-use the pretrained weights. A command-line interface is provided to convert TensorFlow checkpoints in PyTorch models.
**OpenAI GPT-2** was released together with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, JeffreyWu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
This PyTorch implementation of OpenAI GPT-2 is an adaptation of the [OpenAI's implementation](https://github.com/openai/gpt-2) and is provided with [OpenAI's pre-trained model](https://github.com/openai/gpt-2 and a command-line interface that was used to convert the TensorFlow checkpoint in PyTorch.
## Content
| Section | Description |
......@@ -98,6 +103,11 @@ This package comprises the following classes that can be imported in Python and
- [`TransfoXLModel`](./pytorch_pretrained_bert/modeling_transfo_xl.py#L974) - Transformer-XL model which outputs the last hidden state and memory cells (**fully pre-trained**),
- [`TransfoXLLMHeadModel`](./pytorch_pretrained_bert/modeling_transfo_xl.py#L1236) - Transformer-XL with the tied adaptive softmax head on top for language modeling which outputs the logits/loss and memory cells (**fully pre-trained**),
- Three **OpenAI GPT-2** PyTorch models (`torch.nn.Module`) with pre-trained weights (in the [`modeling_gpt2.py`](./pytorch_pretrained_bert/modeling_gpt2.py) file):
- [`GPT2Model`](./pytorch_pretrained_bert/modeling_gpt2.py#L537) - raw OpenAI GPT-2 Transformer model (**fully pre-trained**),
- [`GPT2LMHeadModel`](./pytorch_pretrained_bert/modeling_gpt2.py#L691) - OpenAI GPT-2 Transformer with the tied language modeling head on top (**fully pre-trained**),
- [`GPT2DoubleHeadsModel`](./pytorch_pretrained_bert/modeling_gpt2.py#L752) - OpenAI GPT-2 Transformer with the tied language modeling head and a multiple choice classification head on top (OpenAI GPT-2 Transformer is **pre-trained**, the multiple choice classification head **is only initialized and has to be trained**),
- Tokenizers for **BERT** (using word-piece) (in the [`tokenization.py`](./pytorch_pretrained_bert/tokenization.py) file):
- `BasicTokenizer` - basic tokenization (punctuation splitting, lower casing, etc.),
- `WordpieceTokenizer` - WordPiece tokenization,
......@@ -109,6 +119,9 @@ This package comprises the following classes that can be imported in Python and
- Tokenizer for **Transformer-XL** (word tokens ordered by frequency for adaptive softmax) (in the [`tokenization_transfo_xl.py`](./pytorch_pretrained_bert/tokenization_transfo_xl.py) file):
- `OpenAIGPTTokenizer` - perform word tokenization and can order words by frequency in a corpus for use in an adaptive softmax.
- Tokenizer for **OpenAI GPT-2** (using byte-level Byte-Pair-Encoding) (in the [`tokenization_gpt2.py`](./pytorch_pretrained_bert/tokenization_gpt2.py) file):
- `GPT2Tokenizer` - perform byte-level Byte-Pair-Encoding (BPE) tokenization.
- Optimizer for **BERT** (in the [`optimization.py`](./pytorch_pretrained_bert/optimization.py) file):
- `BertAdam` - Bert version of Adam algorithm with weight decay fix, warmup and linear decay of the learning rate.
......@@ -135,6 +148,9 @@ The repository further comprises:
- One example on how to use **Transformer-XL** (in the [`examples` folder](./examples)):
- [`run_transfo_xl.py`](./examples/run_transfo_xl.py) - Show how to load and evaluate a pre-trained model of `TransfoXLLMHeadModel` on WikiText 103.
- One example on how to use **OpenAI GPT-2** in the unconditional and interactive mode (in the [`examples` folder](./examples)):
- [`run_gpt2.py`](./examples/run_gpt2.py) - Show how to use OpenAI GPT-2 an instance of `GPT2LMHeadModel` to generate text (same as the original OpenAI GPT-2 examples).
These examples are detailed in the [Examples](#examples) section of this readme.
- Three notebooks that were used to check that the TensorFlow and PyTorch models behave identically (in the [`notebooks` folder](./notebooks)):
......@@ -367,6 +383,67 @@ predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'who'
```
### OpenAI GPT-2
Here is a quick-start example using `GPT2Tokenizer`, `GPT2Model` and `GPT2LMHeadModel` class with OpenAI's pre-trained model. See the [doc section](#doc) below for all the details on these classes.
First let's prepare a tokenized input with `GPT2Tokenizer`
```python
import torch
from pytorch_pretrained_bert import GPT2Tokenizer, GPT2Model, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Encode input
text = "Who was Jim Henson ? Jim Henson was a puppeteer"
indexed_tokens = tokenizer.encode(text)
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
```
Let's see how to use `GPT2Model` to get hidden states
```python
# Load pre-trained model (weights)
model = GPT2Model.from_pretrained('gpt2')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict hidden states features for each layer
with torch.no_grad():
hidden_states = model(tokens_tensor)
```
And how to use `GPT2LMHeadModel`
```python
# Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.eval()
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
model.to('cuda')
# Predict all tokens
with torch.no_grad():
predictions = model(tokens_tensor)
# get the predicted last token
predicted_index = torch.argmax(predictions[0, -1, :]).item()
predicted_token = tokenizer.decode([predicted_index])
```
## Doc
Here is a detailed documentation of the classes in the package and how to use them:
......@@ -402,11 +479,12 @@ where
- `bert-base-chinese`: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
- `openai-gpt`: OpenAI English model, 12-layer, 768-hidden, 12-heads, 110M parameters
- `transfo-xl-wt103`: Transformer-XL English model trained on wikitext-103, 18-layer, 1024-hidden, 16-heads, 257M parameters
- `gpt2`: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters
- a path or url to a pretrained model archive containing:
- `bert_config.json` or `openai_gpt_config.json` a configuration file for the model, and
- `pytorch_model.bin` a PyTorch dump of a pre-trained instance of `BertForPreTraining`, `OpenAIGPTModel` or `TransfoXLModel` (saved with the usual `torch.save()`)
- `pytorch_model.bin` a PyTorch dump of a pre-trained instance of `BertForPreTraining`, `OpenAIGPTModel`, `TransfoXLModel`, `GPT2LMHeadModel` (saved with the usual `torch.save()`)
If `PRE_TRAINED_MODEL_NAME_OR_PATH` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links [here](pytorch_pretrained_bert/modeling.py)) and stored in a cache folder to avoid future download (the cache folder can be found at `~/.pytorch_pretrained_bert/`).
- `cache_dir` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example `cache_dir='./pretrained_model_{}'.format(args.local_rank)` (see the section on distributed training for more information).
......@@ -428,6 +506,11 @@ model = OpenAIGPTModel.from_pretrained('openai-gpt')
# Transformer-XL
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
# OpenAI GPT-2
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')
```
### PyTorch models
......@@ -649,6 +732,60 @@ all_hidden_states = lower_hidden_states + [hidden_states]
- else: log probabilities of tokens, shape [batch_size, sequence_length, n_tokens]
- `new_mems`: list (num layers) of updated mem states at the entry of each layer each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]. Note that the first two dimensions are transposed in `mems` with regards to `input_ids`.
#### 14. `GPT2Model`
`GPT2Model` is the OpenAI GPT-2 Transformer model with a layer of summed token and position embeddings followed by a series of 12 identical self-attention blocks.
The inputs and output are **identical to the TensorFlow model inputs and outputs**.
We detail them here. This model takes as *inputs*:
[`modeling_gpt2.py`](./pytorch_pretrained_bert/modeling_gpt2.py)
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, vocab_size[
- `position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
- `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings). The input, position and token_type embeddings are summed inside the Transformer before the first self-attention block.
- `past`: an optional list of torch.LongTensor that contains pre-computed hidden-states (key and values in the attention blocks) to speed up sequential decoding (this is the `presents` output of the model, cf. below).
This model *outputs*:
- `hidden_states`: the encoded-hidden-states at the top of the model as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size] (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
- `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as a torch.FloatTensors. They can be reused to speed up sequential decoding (see the `run_gpt2.py` example).
#### 15. `GPT2LMHeadModel`
`GPT2LMHeadModel` includes the `GPT2Model` Transformer followed by a language modeling head with weights tied to the input embeddings (no additional parameters).
*Inputs* are the same as the inputs of the [`GPT2Model`](#-14.-`GPT2Model`) class plus optional labels:
- `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size].
*Outputs*:
- if `lm_labels` is not `None`:
Outputs the language modeling loss.
- else: a tupple of
- `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings] (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
- `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as a torch.FloatTensors. They can be reused to speed up sequential decoding (see the `run_gpt2.py` example).
#### 16. `GPT2DoubleHeadsModel`
`GPT2DoubleHeadsModel` includes the `GPT2Model` Transformer followed by two heads:
- a language modeling head with weights tied to the input embeddings (no additional parameters) and:
- a multiple choice classifier (linear layer that take as input a hidden state in a sequence to compute a score, see details in paper).
*Inputs* are the same as the inputs of the [`GPT2Model`](#-14.-`GPT2Model`) class plus a classification mask and two optional labels:
- `multiple_choice_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token whose hidden state should be used as input for the multiple choice classifier (usually the [CLS] token for each choice).
- `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size].
- `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_choices].
*Outputs*:
- if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
- else Outputs a tuple with:
- `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
- `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
- `presents`: a list of pre-computed hidden-states (key and values in each attention blocks) as a torch.FloatTensors. They can be reused to speed up sequential decoding (see the `run_gpt2.py` example).
### Tokenizers:
#### `BertTokenizer`
......@@ -697,6 +834,24 @@ Please refer to the doc strings and code in [`tokenization_openai.py`](./pytorch
Please refer to the doc strings and code in [`tokenization_transfo_xl.py`](./pytorch_pretrained_bert/tokenization_transfo_xl.py) for the details of these additional methods in `TransfoXLTokenizer`.
#### `GPT2Tokenizer`
`GPT2Tokenizer` perform byte-level Byte-Pair-Encoding (BPE) tokenization.
This class has three arguments:
- `vocab_file`: path to a vocabulary file.
- `merges_file`: path to a file containing the BPE merges.
- `errors`: How to handle unicode decoding errors. **Default = `replace`**
and two methods:
- `encode(text)`: convert a `str` in a list of `int` tokens by performing byte-level BPE.
- `decode(tokens)`: convert back a list of `int` tokens in a `str`.
Please refer to [`tokenization_gpt2.py`](./pytorch_pretrained_bert/tokenization_gpt2.py) for more details on the `GPT2Tokenizer`.
### Optimizers:
#### `BertAdam`
......@@ -896,12 +1051,13 @@ python run_lm_finetuning.py \
--max_seq_length 128 \
```
### OpenAI GPT and Transformer-XL: running the examples
### OpenAI GPT, Transformer-XL and GPT-2: running the examples
We provide two examples of scripts for OpenAI GPT and Transformer-XL based on (and extended from) the respective original implementations:
We provide three examples of scripts for OpenAI GPT, Transformer-XL and OpenAI GPT-2 based on (and extended from) the respective original implementations:
- fine-tuning OpenAI GPT on the ROCStories dataset
- evaluating Transformer-XL on Wikitext 103
- unconditional and conditional generation from a pre-trained OpenAI GPT-2 model
#### Fine-tuning OpenAI GPT on the RocStories dataset
......@@ -936,6 +1092,22 @@ python run_transfo_xl.py --work_dir ../log
This command runs in about 1 min on a V100 and gives an evaluation perplexity of 18.22 on WikiText-103 (the authors report a perplexity of about 18.3 on this dataset with the TensorFlow code).
#### Unconditional and conditional generation from OpenAI's GPT-2 model
This example code is identical to the original unconditional and conditional generation codes.
Conditional generation:
```shell
python run_gpt2.py
```
Unconditional generation:
```shell
python run_gpt2.py --unconditional
```
The same option as in the original scripts are provided, please refere to the code of the example and the original repository of OpenAI.
## Fine-tuning BERT-large on GPUs
The options we list above allow to fine-tune BERT-large rather easily on GPU(s) instead of the TPU used by the original implementation.
......@@ -1050,12 +1222,25 @@ pytorch_pretrained_bert convert_openai_checkpoint \
Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models))
```shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
pytorch_pretrained_bert convert_openai_checkpoint \
$OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
pytorch_pretrained_bert convert_transfo_xl_checkpoint \
$TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
$PYTORCH_DUMP_OUTPUT \
[OPENAI_GPT_CONFIG]
[TRANSFO_XL_CONFIG]
```
### GPT-2
Here is an example of the conversion process for a pre-trained OpenAI's GPT-2 model.
```shell
export GPT2_DIR=/path/to/gpt2/checkpoint
pytorch_pretrained_bert convert_gpt2_checkpoint \
$GPT2_DIR/model.ckpt \
$PYTORCH_DUMP_OUTPUT \
[GPT2_CONFIG]
```
## TPU
......
#!/usr/bin/env python3
import argparse
import logging
from tqdm import trange
import torch
import torch.nn.functional as F
import numpy as np
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def top_k_logits(logits, k):
if k == 0:
return logits
values, _ = torch.topk(logits, k)
min_values = values[:, -1]
return torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -1e10, logits)
def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda', sample=True):
if start_token is None:
assert context is not None, 'Specify exactly one of start_token and context!'
context = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1)
else:
assert context is None, 'Specify exactly one of start_token and context!'
context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
prev = context
output = context
past = None
with torch.no_grad():
for i in trange(length):
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / temperature
logits = top_k_logits(logits, k=top_k)
log_probs = F.softmax(logits, dim=-1)
if sample:
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
output = torch.cat((output, prev), dim=1)
return output
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--nsamples", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=-1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=int, default=1)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
args = parser.parse_args()
print(args)
if args.batch_size == -1:
args.batch_size = 1
assert args.nsamples % args.batch_size == 0
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
model.to(device)
model.eval()
if args.length == -1:
args.length = model.config.n_ctx // 2
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
while not args.unconditional:
if not args.unconditional:
raw_text = input("Model prompt >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
model=model, length=args.length,
context=context_tokens if not args.unconditional else None,
start_token=enc.encoder['<|endoftext|>'] if args.unconditional else None,
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out[:, len(context_tokens):].tolist()
for i in range(args.batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
if __name__ == '__main__':
run_model()
#!/usr/bin/env python3
import argparse
import logging
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import trange
from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def top_k_logits(logits, k):
if k == 0:
return logits
values, _ = torch.topk(logits, k)
min_values = values[:, -1]
return torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -1e10, logits)
def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda'):
if start_token is None:
assert context is not None, 'Specify exactly one of start_token and context!'
context = torch.tensor(context, device=device, dtype=torch.long)
else:
assert context is None, 'Specify exactly one of start_token and context!'
context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long)
prev = context
output = context
past = None
with torch.no_grad():
for i in trange(length):
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / temperature
logits = top_k_logits(logits, k=top_k)
log_probs = F.softmax(logits, dim=-1)
prev = torch.multinomial(log_probs, num_samples=1)
output = torch.cat((output, prev), dim=1)
return output
def sample_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--nsamples", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--length", type=int, default=-1)
parser.add_argument("--temperature", type=int, default=1)
parser.add_argument("--top_k", type=int, default=0)
args = parser.parse_args()
print(args)
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
model.to(device)
model.eval()
if args.length == -1:
args.length = model.config.n_ctx
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
generated = 0
while args.nsamples == 0 or generated < args.nsamples:
out = sample_sequence(
model=model, length=args.length,
start_token=enc.encoder['<|endoftext|>'],
batch_size=args.batch_size,
temperature=args.temperature, top_k=args.top_k, device=device
)
out = out.tolist()
for i in range(args.batch_size):
generated += args.batch_size
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
if __name__ == '__main__':
sample_model()
__version__ = "0.5.1"
__version__ = "0.6.0"
from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer
from .modeling import (BertConfig, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction,
......@@ -13,6 +14,9 @@ from .modeling_openai import (OpenAIGPTConfig, OpenAIGPTModel,
load_tf_weights_in_openai_gpt)
from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl)
from .modeling_gpt2 import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel,
load_tf_weights_in_gpt2)
from .optimization import BertAdam
from .optimization_openai import OpenAIAdam
......
......@@ -4,13 +4,15 @@ def main():
if (len(sys.argv) != 4 and len(sys.argv) != 5) or sys.argv[1] not in [
"convert_tf_checkpoint_to_pytorch",
"convert_openai_checkpoint",
"convert_transfo_xl_checkpoint"
"convert_transfo_xl_checkpoint",
"convert_gpt2_checkpoint",
]:
print(
"Should be used as one of: \n"
">> `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_pretrained_bert convert_openai_checkpoint OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]` or \n"
">> `pytorch_pretrained_bert convert_transfo_xl_checkpoint TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
">> `pytorch_pretrained_bert convert_openai_checkpoint OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_pretrained_bert convert_transfo_xl_checkpoint TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_pretrained_bert convert_gpt2_checkpoint TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]`")
else:
if sys.argv[1] == "convert_tf_checkpoint_to_pytorch":
try:
......@@ -40,7 +42,7 @@ def main():
convert_openai_checkpoint_to_pytorch(OPENAI_GPT_CHECKPOINT_FOLDER_PATH,
OPENAI_GPT_CONFIG,
PYTORCH_DUMP_OUTPUT)
else:
elif sys.argv[1] == "convert_transfo_xl_checkpoint":
try:
from .convert_transfo_xl_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
except ImportError:
......@@ -61,5 +63,21 @@ def main():
else:
TF_CONFIG = ""
convert_transfo_xl_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT, TF_DATASET_FILE)
else:
try:
from .convert_gpt2_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
TF_CHECKPOINT = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
if len(sys.argv) == 5:
TF_CONFIG = sys.argv[4]
else:
TF_CONFIG = ""
convert_gpt2_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
if __name__ == '__main__':
main()
# coding=utf-8
# Copyright 2018 The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
from __future__ import absolute_import, division, print_function
import argparse
from io import open
import torch
from pytorch_pretrained_bert.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
GPT2Config,
GPT2Model,
load_tf_weights_in_gpt2)
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
# Construct model
if gpt2_config_file == "":
config = GPT2Config()
else:
config = GPT2Config(gpt2_config_file)
model = GPT2Model(config)
# Load weights from numpy
load_tf_weights_in_gpt2(model, gpt2_checkpoint_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + '/' + CONFIG_NAME
print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
torch.save(model.state_dict(), pytorch_weights_dump_path)
print("Save configuration file to {}".format(pytorch_config_dump_path))
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--gpt2_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path the TensorFlow checkpoint path.")
parser.add_argument("--pytorch_dump_folder_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
parser.add_argument("--gpt2_config_file",
default = "",
type = str,
help = "An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture.")
args = parser.parse_args()
convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path,
args.gpt2_config_file,
args.pytorch_dump_folder_path)
This diff is collapsed.
......@@ -56,7 +56,7 @@ def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# Thsi as used when we had a single embedding matrix for positions and tokens
# This was used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
......
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import json
import logging
import os
import regex as re
from io import open
try:
from functools import lru_cache
except ImportError:
# Just a dummy decorator to get the checks to run on python2
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
def lru_cache():
return lambda func: func
from .file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'gpt2': 1024,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(object):
"""
GPT-2 BPE tokenizer. Peculiarities:
- Byte-level BPE
"""
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
vocab_file, merges_file))
return None
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
logger.info("loading vocabulary file {}".format(vocab_file))
logger.info("loading merges file {}".format(merges_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
logger.info("loading merges file {} from cache at {}".format(
merges_file, resolved_merges_file))
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
return tokenizer
def __init__(self, vocab_file, merges_file, errors='replace', max_len=None):
self.max_len = max_len if max_len is not None else int(1e12)
self.encoder = json.load(open(vocab_file))
self.decoder = {v:k for k,v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
def __len__(self):
return len(self.encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
if len(bpe_tokens) > self.max_len:
raise ValueError(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this OpenAI GPT-2 model ({} > {}). Running this"
" sequence through the model will result in indexing errors".format(len(bpe_tokens), self.max_len)
)
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
return text
......@@ -38,7 +38,7 @@ from setuptools import find_packages, setup
setup(
name="pytorch_pretrained_bert",
version="0.5.1",
version="0.6.0",
author="Thomas Wolf, Victor Sanh, Tim Rault, Google AI Language Team Authors, Open AI team Authors",
author_email="thomas@huggingface.co",
description="PyTorch version of Google AI BERT model with script to load Google pre-trained models",
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import json
import random
import torch
from pytorch_pretrained_bert import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel)
class GPT2ModelTest(unittest.TestCase):
class GPT2ModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_position_ids=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
n_positions=33,
n_embd=32,
n_layer=5,
n_head=4,
n_choices=3,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_position_ids = use_position_ids
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_choices = n_choices
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.vocab_size)
position_ids = None
if self.use_position_ids:
position_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)
token_type_ids = None
if self.use_token_type_ids:
total_voc = self.vocab_size
token_type_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)
mc_labels = None
lm_labels = None
mc_token_ids = None
if self.use_labels:
mc_labels = GPT2ModelTest.ids_tensor([self.batch_size], self.type_sequence_label_size)
lm_labels = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
mc_token_ids = GPT2ModelTest.ids_tensor([self.batch_size, self.n_choices], self.seq_length)
config = GPT2Config(
vocab_size_or_config_json_file=self.vocab_size,
n_positions=self.n_positions,
n_embd=self.n_embd,
n_layer=self.n_layer,
n_head=self.n_head,
initializer_range=self.initializer_range)
return (config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids)
def create_gpt2_model(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = GPT2Model(config)
model.eval()
hidden_states, presents = model(input_ids, position_ids, token_type_ids)
outputs = {
"hidden_states": hidden_states,
"presents": presents,
}
return outputs
def check_gpt2_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states"].size()),
[self.batch_size, self.n_choices, self.seq_length, self.n_embd])
def create_gpt2_lm_head(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = GPT2LMHeadModel(config)
model.eval()
loss = model(input_ids, position_ids, token_type_ids, lm_labels)
lm_logits, presents = model(input_ids, position_ids, token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
"presents": presents,
}
return outputs
def check_gpt2_lm_head_output(self, result):
total_voc = self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
def check_gpt2_lm_head_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_gpt2_double_heads(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = GPT2DoubleHeadsModel(config)
model.eval()
loss = model(input_ids, mc_token_ids,
lm_labels=lm_labels, mc_labels=mc_labels,
token_type_ids=token_type_ids, position_ids=position_ids)
lm_logits, mc_logits, presents = model(input_ids, mc_token_ids, position_ids=position_ids, token_type_ids=token_type_ids)
outputs = {
"loss": loss,
"lm_logits": lm_logits,
"mc_logits": mc_logits,
"presents": presents,
}
return outputs
def check_gpt2_double_heads_output(self, result):
total_voc = self.vocab_size
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
self.parent.assertListEqual(
list(result["mc_logits"].size()),
[self.batch_size, self.n_choices])
def check_gpt2_double_heads_loss_output(self, result):
self.parent.assertListEqual(
[list(l.size()) for l in result["loss"]],
[[], []])
def test_default(self):
self.run_tester(GPT2ModelTest.GPT2ModelTester(self))
def test_config_to_json_string(self):
config = GPT2Config(vocab_size_or_config_json_file=99, n_embd=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["vocab_size"], 99)
self.assertEqual(obj["n_embd"], 37)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
output_result = tester.create_gpt2_model(*config_and_inputs)
tester.check_gpt2_model_output(output_result)
output_result = tester.create_gpt2_lm_head(*config_and_inputs)
tester.check_gpt2_lm_head_output(output_result)
tester.check_gpt2_lm_head_loss_output(output_result)
output_result = tester.create_gpt2_double_heads(*config_and_inputs)
tester.check_gpt2_double_heads_output(output_result)
tester.check_gpt2_double_heads_loss_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment