"git@developer.sourcefind.cn:OpenDAS/fastmoe.git" did not exist on "c1e675852848724a9498647b53423bbe63ad566f"
Unverified Commit 075e821d authored by Yusuke Mori's avatar Yusuke Mori Committed by GitHub
Browse files

Add prefix to examples in model_doc rst (#11226)



* Add prefix to examples in model_doc rst

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 4670b57c
...@@ -38,22 +38,22 @@ Usage: ...@@ -38,22 +38,22 @@ Usage:
.. code-block:: .. code-block::
# leverage checkpoints for Bert2Bert model... >>> # leverage checkpoints for Bert2Bert model...
# use BERT's cls token as BOS token and sep token as EOS token >>> # use BERT's cls token as BOS token and sep token as EOS token
encoder = BertGenerationEncoder.from_pretrained("bert-large-uncased", bos_token_id=101, eos_token_id=102) >>> encoder = BertGenerationEncoder.from_pretrained("bert-large-uncased", bos_token_id=101, eos_token_id=102)
# add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token >>> # add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
decoder = BertGenerationDecoder.from_pretrained("bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102) >>> decoder = BertGenerationDecoder.from_pretrained("bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102)
bert2bert = EncoderDecoderModel(encoder=encoder, decoder=decoder) >>> bert2bert = EncoderDecoderModel(encoder=encoder, decoder=decoder)
# create tokenizer... >>> # create tokenizer...
tokenizer = BertTokenizer.from_pretrained("bert-large-uncased") >>> tokenizer = BertTokenizer.from_pretrained("bert-large-uncased")
input_ids = tokenizer('This is a long article to summarize', add_special_tokens=False, return_tensors="pt").input_ids >>> input_ids = tokenizer('This is a long article to summarize', add_special_tokens=False, return_tensors="pt").input_ids
labels = tokenizer('This is a short summary', return_tensors="pt").input_ids >>> labels = tokenizer('This is a short summary', return_tensors="pt").input_ids
# train... >>> # train...
loss = bert2bert(input_ids=input_ids, decoder_input_ids=labels, labels=labels).loss >>> loss = bert2bert(input_ids=input_ids, decoder_input_ids=labels, labels=labels).loss
loss.backward() >>> loss.backward()
- Pretrained :class:`~transformers.EncoderDecoderModel` are also directly available in the model hub, e.g., - Pretrained :class:`~transformers.EncoderDecoderModel` are also directly available in the model hub, e.g.,
...@@ -61,15 +61,15 @@ Usage: ...@@ -61,15 +61,15 @@ Usage:
.. code-block:: .. code-block::
# instantiate sentence fusion model >>> # instantiate sentence fusion model
sentence_fuser = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_discofuse") >>> sentence_fuser = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_discofuse")
tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse") >>> tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
input_ids = tokenizer('This is the first sentence. This is the second sentence.', add_special_tokens=False, return_tensors="pt").input_ids >>> input_ids = tokenizer('This is the first sentence. This is the second sentence.', add_special_tokens=False, return_tensors="pt").input_ids
outputs = sentence_fuser.generate(input_ids) >>> outputs = sentence_fuser.generate(input_ids)
print(tokenizer.decode(outputs[0])) >>> print(tokenizer.decode(outputs[0]))
Tips: Tips:
......
...@@ -31,28 +31,28 @@ Example of use: ...@@ -31,28 +31,28 @@ Example of use:
.. code-block:: .. code-block::
import torch >>> import torch
from transformers import AutoModel, AutoTokenizer >>> from transformers import AutoModel, AutoTokenizer
bertweet = AutoModel.from_pretrained("vinai/bertweet-base") >>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
# For transformers v4.x+: >>> # For transformers v4.x+:
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False) >>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
# For transformers v3.x: >>> # For transformers v3.x:
# tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base") >>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
# INPUT TWEET IS ALREADY NORMALIZED! >>> # INPUT TWEET IS ALREADY NORMALIZED!
line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:" >>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
input_ids = torch.tensor([tokenizer.encode(line)]) >>> input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad(): >>> with torch.no_grad():
features = bertweet(input_ids) # Models outputs are now tuples ... features = bertweet(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+: >>> # With TensorFlow 2.0+:
# from transformers import TFAutoModel >>> # from transformers import TFAutoModel
# bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base") >>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
The original code can be found `here <https://github.com/VinAIResearch/BERTweet>`__. The original code can be found `here <https://github.com/VinAIResearch/BERTweet>`__.
......
...@@ -40,20 +40,20 @@ Examples of use: ...@@ -40,20 +40,20 @@ Examples of use:
.. code-block:: .. code-block::
from transformers import HerbertTokenizer, RobertaModel >>> from transformers import HerbertTokenizer, RobertaModel
tokenizer = HerbertTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") >>> tokenizer = HerbertTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1") >>> model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1")
encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt') >>> encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt')
outputs = model(encoded_input) >>> outputs = model(encoded_input)
# HerBERT can also be loaded using AutoTokenizer and AutoModel: >>> # HerBERT can also be loaded using AutoTokenizer and AutoModel:
import torch >>> import torch
from transformers import AutoModel, AutoTokenizer >>> from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") >>> tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1") >>> model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1")
The original code can be found `here <https://github.com/allegro/HerBERT>`__. The original code can be found `here <https://github.com/allegro/HerBERT>`__.
......
...@@ -31,23 +31,23 @@ Example of use: ...@@ -31,23 +31,23 @@ Example of use:
.. code-block:: .. code-block::
import torch >>> import torch
from transformers import AutoModel, AutoTokenizer >>> from transformers import AutoModel, AutoTokenizer
phobert = AutoModel.from_pretrained("vinai/phobert-base") >>> phobert = AutoModel.from_pretrained("vinai/phobert-base")
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") >>> tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! >>> # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
line = "Tôi là sinh_viên trường đại_học Công_nghệ ." >>> line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
input_ids = torch.tensor([tokenizer.encode(line)]) >>> input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad(): >>> with torch.no_grad():
features = phobert(input_ids) # Models outputs are now tuples ... features = phobert(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+: >>> # With TensorFlow 2.0+:
# from transformers import TFAutoModel >>> # from transformers import TFAutoModel
# phobert = TFAutoModel.from_pretrained("vinai/phobert-base") >>> # phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
The original code can be found `here <https://github.com/VinAIResearch/PhoBERT>`__. The original code can be found `here <https://github.com/VinAIResearch/PhoBERT>`__.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment